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P_FA_

This is an attempt to assimilate the rapidly increasing

literature available on the "pseudo" invertibility of matrices.

Chapter 2 is an exposition of several definitions of a pseudo

inverse of a matrix. The equivalence or near equivalence of these

definitions are established. Conditions sufficient for the equivalence

of others are also given.

Chapter 3 establishes many properties of the Penrose pseudo

inverse, which seems to be the formulation most easily understood and

lends itself well to algebraic manipulations so that many properties

can be established without going into more sophisticated analysis.

An attempt has been made to present alternative forms and formulations

of the Penrose pseudo inverse while at the same time keeping the present-

ration as comprehensible as possible so that a minimum of preparation

and effort are required on the part of the reader.

Chapter 4 is devoted to the Scroggs-Odell pseudo inverse which

requires more analysis to comprehend and work with than the Penrose

definition. Properties of this pseudo inverse are somewhat difficult

and lengthy to establish, and thus it is felt that an incorporation

of this definition in the previous chapters would disrupt the '_nini-

m_, of preparation and effort on the part of the reader" attempt in

those chapters. Many properties are established and sufficient

conditions for others are given. Pseudo inverses in general are

investigated and the relationship between any two pseudo inverses is

established. Necessary and sufficient conditions for the Scroggs-Odell

and Penrose definitions to be equivalent over their common domain of

definition are also established.
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Chapter 5 is an assimilation of available material on the many

applications of pseudo inverses. Emphasis is on applications in the

field of statistics and some background in statistics is required.

Chapter 6 is a presentation of several computing schemes for

obtaining the (Penrose) pseudoinverse of a matrix. The techniques

are presented along with some comment concerning their merits. The

same numerical example is used to illustrate several of the techniques,

thus facilitating a comparison of the methods presented.
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fl_FER I

INTRDDUCTION

1 .i History

The concept of a generalized inverse for arbitrary m x n matrices

with elements from the real or complex fields is Of widespread current
f

interest. Much research has been done in the past decade on the theory

and applications of a pseudo inverse for matrices. Indeed, research

is presently being carried further at a very rapid pace.

In a paper given at the Fourteenth Western Meeting of the Ameri=

can Mathematical Society at the University of Chicago, April 9=10, 1920,

Professor E. H. Moore first called attention to a "useful extension of

the classical notion of the reciprocal of a nonsingular square matrix" [65].

In 1935, Moore discussed this concept at some length in his General

Analysis [66], his pioneering work being unfortunately somewhat obscured

by rather inaccessible notation. Parts of Moore's work have been

interpreted by Ben-lsrael and fiharnes [6] and by Greville [49]. The

definition of the pseudo inverse of a matrix A, denoted by A+,

originally given by Moore has been interpreted by Ben=Israel and Charnes

[6] to be:

A+ is the pseudo inverse of A if

AA+ -- PR(A) ' (1)

A+A = PR(A+) , (2)
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where PR(A) is an orthogonal projection on the range space of A.

Moore established the existence and uniqueness of A+, for any A,

and gave an explicit form for A+ in terms of the subdeterminants

of A and A , the conjugate transpose of Ao Various properties

of A+ and the relations among A, A , and A+ were incorporated

in his General Analysis, and concurrently were given an algebraic

basis and extensions by Von Neumann [89] in his studies on regular

rings.

Unaware of Moore's results, Bjerhammar [15, 14] and Penrose

Lr70,71] each gave _-_ .... _-÷ ....... c _h...... _ o

Bjerhanmmr constructed A+ by identifying it with a submatrix of the

inverse of a suitable square nonsingular matrix, obtained by multiply-

ing A with another matrix° The general solution of

Ax = b

when solvable, was given by Bjerhmmar as

x = A+b + (I - A+A)y ,

where y is arbitrary up to dimensional compatibility° This solution

is a corollary of the definition given by Penroseo The least square

character of the solution was used by Bjerhanmmr in geodetic appli-

cations; adjusting observations which gave rise to singular matrices.

Penrose [70] defined the pseudo inverse as the unique solution

of the equations
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AXA = A ,

XAX = X )

(AX) -- AX,

(XA) = XA.

As will be seen in Chapter 2, Penrose's proof of the existence and

uniqueness of A + is based on the vanishing of a finite polynomial

in AA.

As mentioned earlier, some of Moore's results did not become

well known because the unique notation enrployed was not adopted by

other mathematicians. A clarifying account of Moore's work has been

given by Greville [49] where the theory is redeveloped in a clear

exposition following the original Moore approach.

A more abstract account of the theory of pseudo inverses has

been developed by Ben-Israel and Charnes [6], and F. J. Beutler [11].

Some additional names prominent in the development and study

of the theory and applications of pseudo inverses are Hestenes, Tseng,

Drazin, Cline, l_le, Ratio, Rao, and Decell.

Man), of the researchers in the theory of pseudo inverses have

made and discussed various applications of interest and importance.

Previously mentioned were the geodetic applications of Bjerha, mmr.

Den Broeder and Charnes, Ben-Israel, and others have given explicit

expressions for A+

and Charnes [34],

as a limit. One of the expressions of den Broeder

* * -i
A+ = liraA (A_I + AA )



was used to solve a problem in diffusion. Other results by den Broeder

and Charnes include some theorems on the pseudoinverse, rank, and

conditions on nonsingularity for some matrices of special structure,

and a necessary and sufficient condition for A to be the solution

of the circle composition equation

AX = A+ X = XA ,

where A is normal.

In developing a spectral theory for arbitrary m x n matrices,

which is an extension of He._rdtimn theoD, , Hestenes [52] used A+ in

an essential manner to obtain theorems on structure and some properties

of matrices relative to "elementary matrices" and the relations of

" -orthogonality" and " -co,mmtativity."

Penrose suggested applications of the pseudoinverse in least

squares solutions to inconsistent linear equations, in particular to

statistical problems.

Greville [49] gave an iterative procedure for calculating A+ ,

using successive partitions of A. Using A+ he modified the proce-

dure of Dent and Newhouse [55] in constructing polynomials orthogonal

over a discrete domain, and used the least squares properties of A+

in regression analysis.

Pyle [74] and Cline [26], following den Broeder and Charnes,

have considered applications to systems of linear equations° The

projections AA+ , and A+A were used by Pyle [74] in a gradient

method for solving linear progran_ing problems° These methods were also

used by Rosen [78, 79] in his conjugate gradient method for solving

linear and nonlinear programs.
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An explicit form for the pseudo inverse based upon the

Cayley-Hamilton Theorem has been established by Decell [33]. This

interesting result leads to a convenient computing technique. The

algorithm is outlined briefly in Chapter 6.

Also, Charnes, Cooper, and Thompson [22] have employed the

pseudo inverse and the associated solvability criteria in an essential

manner to resolve questions of the scope and validity of the so-called

"linear programming under uncertainty," and to characterize optimal

stochastic decision rules.

Kalman [55] and ,_v,_**_,=l_'_'_;"L_vjr_nlhave utilized _uhe pseudo inverse

in control theory by using its least squares properties in mean square

error analysis. Ben-Israel and Charnes [4], following Bert and Duffin

[16], have used the pseudo inverse in the analysis of electrical

networks, and obtained the explicit solution, dc or ac, in terms

of its topological and dynamical characteristics.

i. 2 Importance

The role of the pseudo inverse of a matrix is increasing

rapidly in importance as the theory of matrices is blossoming in the

formulation and solution of problems. Prior to the advent of the

electronic computer, a mathematician could talk glibly about the

existence and uniqueness of a solution to a system of ten equations in

ten unknowns. Few had ever tried to find the solution of such a

system. Now matrix theory not only provides an extremely helpful

tool for designing a mathematical or statistical model of a system



with many variables, but also affords a practical and convenient

method of adapting the data for processing by a computer. A problem

which occurs in computations resulting in a waste of time and money

is trying to compute the inverse of a matrix which is not known in

advance to be singular. The concept of a "generalized" or "pseudo"

inverse of a matrix overcomes this problem and has been found to be

a very useful tool in simplifying and in many cases amplifying the

existing theories in many areas of mathematical statistics.

!o 3 Reference System

The chapters are divided into numbered sections. Theorems,

definitions, etc., are also numbered by chapters. For example,

Theorem 2.6 refers to Theorem 6 of Chapter 2o

The equations are numbered anew in each section, and equation

numbers are always enclosed in parentheses° Just the equation

number is given in referring to an equation in the same section;

otherwise chapter and section numbers are prefixed.

Numbers in brackets refer to the numbered references in the

Bibliography.

1.4 Basic Concepts and Notation

Capital letters are used to designate matrices and lower case

letters for vectors. The n by n identity matrix is denoted by

I and the null or zero matrix, by _ or simply as Oo Generally,n

the dimensions are clear from the context° In all cases the dimensions



are assumed to be conformable for addition and multiplication to be

well-defined. The matrices are assumed to be defined over the field

of complex numbers unless specified otherwise. The conjugate transpose

A of an m by n matrix A is the n by m matrix with ij entry

aji where aji is the complex conjugate of the element in the ji

position of the matrix A. A matrix is said to be hermitian if

A = A, and normal if AA -AA.

Lower case Greek letters or subscripted lower case letters are

used to represent scalars; i.e. Complex or real numbers. If x and

y are column vectors, the scalar product x y = (x, y) is defined

to be Xl_ 1 + x2_ 2 + . . . + Xn_ n . If (x, y) = O, the vectors

are said to be orthogonal. It is often convenient to denote certain

rectangular submatrices of a given matrix by a single letter, and

thus to consider matrices whose elements themselves are matrices.

A partitioned matrix A in which the submatrices A.. vanish for
13

i # j is also called diagonal and is denoted by A = diag (All ,

AI2, • . . , Am).

A matrix is said to be invertible or nonsingular if it has an

inverse, singular if it does not. A matrix is said to be idempotent

if A2 --A. [A[ is used to designate the determinant of A. A finite

set of matrices is called linearly dependent if there exist scalars,

not all zero, such that raiAi = 0o If such a set of scalars does

not exist, the set is said to be linearly independent° Linear inde-

pendence of vectors is a special case of this definition. The rank of

a matrix is the maximum number of linearly independent rows or columns



of the matrix. For any m by n matrix A having linearly independent

columns, there exist n by m ma_ices B , called left inverses of A,

such that BA = I. In fact, all such matrices can be characterized

in terms of one of them as being expressable in the form B + U

where (B + U)A = I _and UA = 0 . A similar situation holds for a

matrix with linearly independent rows in terms of a right inverse.

Many times it is advantageous to consider matrices as represen-

tations of linear operators on finite dimensional vector spaces. Towards

this end, a brief discussion of some linear operator theory needed

later on follows° Since every finite dimensional inner-product vector

space is a Hilbert space, the setting is assumed to be such a space.

For practical purposes one could assume the setting is the Euclidean

n-dimensional vector space over the complex number field. The set of

all vectors x such that Ax = 0 is called the null space of A

and is denoted by N(A). The set of all vectors y for which there

exist a vector x

space of A , and is denoted by

direct sum of subspaces U and

be written in the form u + v ,

one and only one way, in which case we write

such that Ax = y

R(A).

V

is called the range or cohmm

A vector space X is the

if every vector x in X can

with u in U and v in V , in

X= USV . If X= USV ,

the projection on U along V is the transformation E such that

Ex = u . A linear transformation E is a projection on some subspace

if and only if it is idempotent.



Since it is generally clear from the context ) no attempt is

made to distinguish between a linear operator and its matrix

representation.

More specialized notation and definitions are given as needed

in the development of the text.



OMPTER 2

DEFINITIONS AND THEIR RELATIONSHIPS

2.i The Penrose Definition

Penrose [70] defined the pseudoinverse of any (possibly rectangular)

matrix over the field of complex numbers in terms of the unique solution

of a certain set of equations. In showing the existence of this

matrix, it will be useful to exploit the following properties of the

conjugate transpose A , of the matrix A .

A = A

(A+B) - A +B

(BA) = AB

AA = 0 implies A = 0 .

The last of these follows from the fact that the trace of AA is the

sum of the moduli of the elements of A. From the last two of these

properties we obtain the rule

BAA = CAA implies BA = CA , (1)

since

Similarly,

CBAA - CAA) (B - C) -- (BA- CA) (BA- CA) .

BAA = CAA implies BA = CA . (2)

I0
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Theorem 2.1: The four equations

AXA = A (3)

XAX = X (4)

(AX) = AX (S)

CXA) = XA (6)

have a unique solution for any matrix A.

Proof: It will be shown that (4) and (S) are equivalent to the

single equation

XXA -- X (7)

and that (3) and (6) are equivalent to

XAA = A . (8)

Equation (7) is obtained by substituting (5) in (4),

XAX = XCAX) = XXA = X.

Thus, (5) and (4) imply (7). Conversely, (7) implies

AXXA = AX,

the left side of which is hermitian so that

AX = CAX) .

Now by substituting (5) back into (7) we have
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A = XCAX) = _ = x.

Thus, (7) implies (4) and (5).

Substituting (6) into (3) and taking transposes,

* * #%

AXA = ACXA) = AAX = A,

thus

(AAX) -- XAA = A .

Hence (3) and (6) imply (8). On the other hand, (8) implies

XAAX = AX

in which XAA X is hermitian so that (XA) -- XA , which is (6).

Now substituting (6) back into (8) gives

XAA = (_ A = AXA = A ,

and taking transposes again,

(AXA) = A

or

AXA -- A .

Therefore (3) and (6) follow from (8).

Stmmmri zing these results :

XAX = X and (AX) = AX if and only if XX A = X , and AXA = A

and ()CA) = XA if and only if XAA = A .
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It is sufficient then to find a solution X satisfying (7) and (8).

Such a matrix will exist if a matrix B can be found such that

BAAA = A

since X = BA will satisfy (8), and since (8) implies

AXA = A

from which it follows that

BA X A -- BA

which proves BA a solution of (7).

* A*A 2 (A* 3Since A A , ( ) , A) , . . . cannot all be linearly

independent, there exists a relation

* * 2 *
AIA A + _2(A A) + . . . + Ar(A A) r

* k
+ . . . + ½(A A) = o

* r+l
+ Xr+I(A A) ÷

(9)

where the _i are not all zero• Let _r be the first nonzero

and put

* A*B =-Arl[Ar+l I + Ar+2(AA ) + . . . + Ak(A) k-r-l] •

Then

B (A'A) r+l = _irI[Ar+l (A'A)r+l ÷

B (A'A) r+l = (A'A)r by equation (9).

* k
• + _k(AA) ] ,
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Now a repeated application of (I) and (2) gives

BAAA = A .

To show that X is unique, X is assumed to satisfy (7) and (8),

which, we recall, sunmmrize the defining equations 5, 4, 5, and 6.

Next suppose that Y satisfies equations 3, 4, 5, and 6.

!

AYA = A (3)

!

YAY = Y (4)

!

(AY) : AY (s)

!

(YA) = YA (6)

! I ! !

Substituting (6) in (4) and (5) in (S) gives

Y = AYY

and

A = AAY.

Thus )

X = XXA = XXAAY = XAY = XAAYY= AYY = Y .

The unique solution of equations 3, 4, 5, and 6 was called by

Penrose the generalized inverse of the matrix A, denoted A+ . A more

expressive term, pseudoinverse, is used generally in this text, although

the terms are used interchangeably. The symbol A+ , however, has
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becomestandard. The conciseness of the Penrose definition, as well

as its relative historical priority, makes it well suited for use

as a criterion in comparing for equivalence some less susccinctly

stated definitions. Definitions due to Moore (interpreted by

Greville [49]), Zelen [90], and Frame [41] will be shown to be

equivalent by showing that the pseudoinverses defined by these

writers satisfy the penrose equations.

2.2 The fireville (Moore) Definition

Greville has developed Moore's definition of the pseudo-

inverse of a rectangular matrix by considering first an m x n (m > n)

matrix B of maximal rank. Since the coltmms of B are linearly

independent, the vector v --Bu vanishes if and only if u is a

zero vector. Therefore, uTBTBu = vTv > 0 whenever u _ 0. Thus

BTB is positive definite and therefore nonsingular. The pseudo-

inverse of B is then defined as B+ , where

B+ = (BTB)-IB T . (i)

Note that this reduces to the ordinary inverse when m = n . For

m > n , the pseudoinverse is a left inverse of B , unique in the

sense that it is the only left inverse of B with rows in the row space

of BT. Similarly, the pseudoinverse of an m x n matrix C of

rank m is defined by

C+ = cT(ccT) -I ° (2)

This is the only right inverse of C having colunms in the column

space of CT .
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Consider the general case of a nonzero matrix A whose rank

r may be smaller than its smaller dimension m . Let B denote

a matrix of r coltmms whose colurms form a basis for the column

space of A. Similarly, let C denote an r rowed matrix whose

rows form a basis for the row space of A. The pseudoinverses

of B and C are given by (I) and (2), respectively.

Before the pseudoinverse of A is defined, note that A

has a tmique left identity matrix with rows in the row space of AT .

This is seen to be IL = BB+ , for evidently

ILB = B (3)

and it follows that

ILA = A (4)

since each colum of A is a linear combination of the colurms of B .

On the other hand, if IL is of the form XBT and satisfies (4),

it preserves every vector in the colunm space of A, and we have

XBTB = B. Thus X = B(BTB) -I , and IL = BB+ . Similarly,

IR = C+C (5)

is the only matrix with cohmms in the colunm space of A which

satisfies the relation

R = A. (O)

It is easily seen that IL and IR are both sy_retric and idempotent

as are I - IL and I - IR "
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The pseudoinverse of any matrix A is now defined to be the

unique matrix A+ , which has its rows in the row space of AT and

its colums in the colum space of AT and which satisfies

AA÷ = I L , A÷A= I R . (7)

We investigate the existence of such a matrix A+ by cases. In the

case of matrices of maximal rank it is readily seen that matrices of

the type B and C given by (1) and (2) above meet the requirements.

In the trivial case of the zero matrix A , if I L is taken to be the

.T
square zero matrix, its rows are in the (null) row space of _ _,ud

its colums are in the (null) colum space of AT, so that equations

4, 6, and 7 are satisfied if we take A÷ = AT .

To show the existence of the pseudoinverse of the general non-

zero mtrix A, we introduce the mtrix H of order r, given by

H = B+AC+ . (8)

Thus

BHC-- BB+AC+C = ILAI R = A o (9)

Since the rank of a product does not exceed the rank of any factor,

(9) shows that H is of rank r, and therefore nonsingular. Finally,

we take

A+ = C+H-IB + o (i0)

It is clear from equations I0, i, and 2 that this matrix has its

rows in the row space of BT and its columns in the cohmm space of
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CT • in other words in the row space and column space of AT o

Moreover, since by (9) we have

BHC = A

and by (10)

C+H+B+ = A+

then

and

AA+ = BHCC+H-1 B = BB+ = I L ,

A+A = C+H-IB+BHC = C+C = I R ,

so that (7) is satisfied.

The following proof of the uniqueness of A+ appears in

Moore's memoir. Suppose A 1 and are two matrices satisfying

(7) and having their rows and colunms in the row and cohmm spaces

of AT . Then

But I R= C+C , and the colums of A2 are in the column space of AT ,

which is also that of C+ , so that we can find a matrix X such that

A2 = C+X . Therefore,

Similarly,
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where

= A2I L BB+ +

+ +

AI YB+ Thus A I = A2

2.3 Equivalence of the Penrose and Greville Definitions

Equivalence is established by showing that the Greville pseudo-

inverse satisfies the Penrose equations. This technique implies

complete equivalence because of the uniqueness of the Penrose pseudo-

inverse. The Greville pseudoinverse is easily shown to be a solution

of the Penrose equations by recalling that

AA+ _- IL , A+A = IR

Where IL is a left identity of A and IR is a right identity.

Hence, in equation (I.3)

AA+A -- ILA -- A .

To show that A÷ satisfies (1.4) recall that A+ has its columns in

the colunm space of AT, which is also that of C÷ ; so that there

exists a matrix X such that A+ = C+X. Then,

A+AA + = IRA + -- C+CC+X = C+X = A+

which proves (1.4). Since Greville discussed the Moore pseudoinverse

in terms of a matrix with real elements, (1.5) and (1o6) are satisfied

if (AA+) T = AA + and (A+A)T -- A+A . Recall from the Greville

definition that
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AA + = IL = BB +

where B was formed from the linearly independent columns of A .

Also recall that B+ = (BTB)-IB T so that

AA+ = IL = BB+ = B(BTB)-IB T .

Then

(AA+)T = I T = [B(BTB)-IBT] T

= B[B(BTB_I ]T

= B(BTB) -1B T

= BB+

= IL

=AA + .

Similarly, A+A = IR = cT(ccT) "I , where C is formed from the

linearly independent rows of A , is sy_netric so that

(A+A)T = A+A .

r

2.4 The Zelen Definition

In investigating the role of constraints in the theory of least

squares, Zelen [90] finds it adequate for his purpose to develop the

pseudoinverse for the less general case of symmetric matrices only.
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The result is that the Zelen pseudoinverse if a special case of that

of Penrose. As will be pointed out later, a single restriction on

the conclusion of Zelen's theorem will suffice to make all the

properties of the Penrose pseudoinverse hold for the pseudoinverse

defined by Zelen.

Theorem 2.2 : If A is a p x p s)nmetric matrix of rank q,

q < p, then there will exist matrices H(p x r) and K(p x r) such

that

.rA _- IHr l oU . (i)

Furthermore, there will exist matrices C1 (p x p), C2( p x r), an__dd

Cs(r x r ) such that

A C1 C2

C_ C5

(2)

having th__e properties

(i) C1 is a sy_etric matrix

(ii) C1 = ClAC 1 , A = ACIA

(iii) AC 1 = I = KoITK)-IHT

(iv) C2 : H(KTH) -1

(v) KC 3 = _, .

(3)
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Proof: Since A has rank q, there exist r (r = p - q)

linearly independent relations among'the rows of A. The nullity

of A is r. Thus, if H is formed by selecting as its columns

any r linearly independent vectors which form a basis for the null

space of A, then

AH =

but since A is sy_netric,

HTA = _ .

Let K have as its columns any set of r vectors which form a basis

for the null space of A. To show that HTK is nonsingular, let x

be any r x 1 vector and assume that HTKx = 0. Partitioning HT

into its rows h. we have that
1

'hl"

h 2

o

o

h r

Kx = = 0 or hiKx = 0, i = i, 2, ° .., r

. °

hlKX

h2Kx

Now AKx = 0 since each COitmm of K is a basis vector for the null

space of A. But AKx = 0 implies that Kx is a vector in the null

space of A, and Kx orthogonal to each hi implies that Kx = 0.

Now partition K into its columns, say, K = (kl, . . . , kr). Then
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xI

Kx -- (kl, . . . , kr) .

. Xr

klX 1 + . . . +krx = 0r °

But the vectors ki are linearly independent so that xI = x2 = . . . =

xr = 0 . Hence, HTK is nonsingular and has nonvanishing determinant

since HTKx = 0 implies x = 0 for any vector x.

Since [HTK[ # 0, the rows of KT are linearly independent of

the rows of A. This implies that for all vectors uT(l x p ) and

vT(l x r), uTA + vTK T = 0 and hence the augmented matrix

has full rank. Using the relations of a matrix to its inverse

results in

or

(i) AC1 + KC_ = Ip

(ii) KTc1 --

(iii) AC 2 + KC 3 -- 0

(iv) KTc2 = I r •

(4)
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Equation 4.i implies that

HTACl = HTKcT - HT '

but since [HTK[ # 0 , then

and upon taking the transpose of both sides we get

C2 = H(KTH) -1

which proves (5.iv). Furthermore,substituting (3.iv) into (4.i)

gives

ACI+KCT = I
P

ACI + K(HTK)01HT = I
P

or

AC 1 = IP
K(HTK) -1H T

which is exactly (3.iii). Now (3.iii) implies that

CIAC I = CI - CIK(HTK)-IHT

and applying C1K = ¢ gives

CIAC I = C1 ,

thus the first part of (3.ii) holds. Similarly,
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AC1 : I - H(KTH)-IHT

implies

since

ACIA = A - H(KTH)-IHTA =

HTA = _, hence (3.ii). Now since

A ,

C_ = (HTK)-IH T

then

and by the synmetry of A ,

AC 2 = _ o

By virtue of (4oiii), KC3 = _ , hence (5.v) is proved.

2.5 Equivalence of the Penrose and Zelen Definitions

Prom (4.5ii) the matrix C1 = A+ satisfies the first two of

the defining equations of Penrose. In order to show that C1

satisfies the last two Penrose equations, the matrix K must be

chosen to be H. This is possible since H and K have the same

dimensions and each is formed by having its colu_ms to be any

basis for the null space of A. Under this requirement, (4.3iii)

becomes

AC I = I - H(HTH) -I



and (4o3iV) becomes

c2 = H(HTH)-1

Then

(A_) T= [I - H(HTH)-IHT] T

and CIA = I C2HT so that

(CIA) T= [1 - H0tTH)-IHT] T

= i - H_%-1., = AC1

= I - H(HTH)-IH T = C1A.
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2 o6 The Frame Definition

The definition of the pseudoinverse given by Frame [41] grows

out of his discussion of the solution of degenerate linear systems.

Following Frame's example, we will explore in some detail his

development of the "semi-inverse" of a mtrix and then modify it to

the ordinary pseudoinverseo The painstaking approach employed by

Frame gives some insight into the application of the pseudoinverse

to the method of least squares. It will be useful first to consider

some definitions and a theorem on the rank echelon factorization

of a matrix°

Definition 2o1: The distinguished colmms of a matrix A

are the r nonzero coltams, no one of which is a linear combination

of it__s predecessors.

Definition 2o2 : An mxn matrix of rank r < m is a row

echelon matrix if its last m - r rows are zero, its distinguished
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cohmms are the first r cohmms of th__£euni___tt(identity) matrix

I m , in order , and the l's i_nnthes____ecohmms are the first non-

zero entries in their respective rows. If m = r, there are no

rows of zeros and the r x n matrix is a reduced echelon matrix.

Theorem 2.3: Every m x n matrix A of rank r has the

row echelon factorization

A = B C
mxn mxr rxn

where the colums of B are the distinguished columns of A, an__dd

C is a reduced echelon matrix°

Proof:
Let Bi be the i_" distinguished column of A and

the ith column of B. Then each column A. of A can be written
3

r

Aj = r. Bicij
i=l

where the constants of combination cij form the matrix C. Since

each cohmm of A that is not a distinguished colunm is a linear

combination of preceding distinguished coltmms, C has a reduced

echelon form°

The matrix L that converts the matrix A to the row echelon

matrix LA is the right-to-left product of the elementary factors

L1 , L2, . . . , Lk ;

L = Lk . . . L2L 1 ,
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but it is usually unnecessary to write out these products separately.

Indeed, by row operating on (A, I) instead of A, we obtain (LA, L)

as the reduced echelon matrix so that if LA = I , then L = A "I

appears as the right-hand block°

The system Ax = y is called degenerate if the m x n

coefficient matrix A of rank r is not both square and invertible.

Either many or no solutions exist. If the vector y --Ax is not

zero for any vector x, either y --Ax or some left multiple

thereof may still be minimized in length by some vector Xo, using

least squares, and the set of soltuions x (if any), or "best fit"

vectors x will have the form

X = X O + AoZ

where AAo = # , and z is arbitrary.

A matrix Ao of rank n - r is called a complete right

annihilator of A if AA o =# o It is the zero matrix if n = r.

Both the particular vector xo and a complete right annihilator

Ao of A can be read from the partitioned echelon matrix (LA, L)

computed by row operations on (A, I) .

Let

(LA, L)  LIALi[CLI]
[L÷ L2 .L2

where L2A is the (m- r) x n null matrix, and where LIA is an

r x n reduced echelon matrix,
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[PlIC -- LIA -- (I, V)P - (I, V) r x

P2

The n x n matrix P is a permutation matrix with inverse

P = (Pl' P2) " Its upper r x n submatrix Pl has as its nonzero

colunms all the r distinguished cohmms of C which are the first

r cohmms of I. The r x (n- r) matrix V is formed from the

remaining cohmms of C. The rows of the lower submatrix P2 of P

are all the rows of the n x n unit matrix that do not appear in P ,

arranged so that

= Pl + VP2 "

C -- P1 + VP2 "

If r > 0, the mx r matrix

B = AP 1

consists of the r distinguished columns of A, and A has the

_.. rank factorization

A = BC = APILIA . (i)

The equations

I = PlPl = (Pl + VP2)P1 ; CPl = L1/_I = L1B (z)

show that L1 is a left inverse of B and P1 is a right inverse

* = As
of C. The n x m matrix PILl will be called the semi-inverse

of the matrix A.
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Before the semi-inverse is considered further, we digress to

point out incidentally that since L2A = _ , a solution x° of

Ax = y can exist only if

L2Y -- L2Ax = 0 .

In any case, a minimizing vector that reduces the length of L2Y

is a solution xo of LI(AX - y) = _ and is given by

xo = PILl y •

Any right annihilator of A = BC also annihilates C = (I, V)P .

Hence it can be written in the form AoZ where

PlAo -- P -- ( , Pz)
-V

I

=P2 -PV.

The solutions of Ax - y or minimizing vectors x for L(Ax - y)

are

x = P1L1 y ÷ (P2 - Pl V) z

with z arbitrary.

Motivated by equation i, Frame has stated the following definition:

Definition 2.3: A semi-inverse of an m x n matrix A of

r_____ r i__sany n x m matrix As o_fran___kkr such that

AASA = A. (3)



AsIf A=_ , =A

(3) implies ASA

idempotent since

and

If A is nonsingular, then As = A "I since• )

-- I = AA s . Note that both ASA and AA s are

(ASA) 2 = As (AASA) = ASA ,

c_S)2 = c_SA)AS=_ s .

From the above definition, it is clear that the pseudoinverse

is a semi-inverse since the Penrose pseuodinverse is included in the

set of solutions of (5). On the other hand, every semi-inverse of A

satisfies

ASAAs = As

since from (1) we have

but since

ASAA * *
= PILIAPILI

LIA = C, then from (2)

ASAAs * , , , ,
= PILIAPIL 1 = PICPILI = PILl = As .

Thus the semi-inverse satisfies the first two Penrose equations.

We now have only to examine the circumstances under whichboth

idempotents AA s and ASA are hermitian. The restriction on the

semi-inverse which accomplishes this is best pointed out in view of a

result proved by Frame [41, p. 220].

51
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Theorem 2°4: Every semi-inverse As of a matrix A _

with rank factorization A = BC has the form

As-AN+"=_÷B_:NC_)+M

where CCN+ = I , N is nonsingular n x n , and

_+ * * cc_*c*)-_ )÷=NNC = N(CN ,

which is a right inverse of C, and where

B+M (B* *- M MB) -1B*M*M = (MB)+M ,

a left inverse of B. The idempotents ASA an__ddAAs have the form

AN+MA= cN+c and AAN+M = BB+M .

Now if

, , , • -icAsA- cN+c--NNc (CNNC )

then ASA is hermitian if N is chosen to be I , for then

nxn

, , -iC __ .ASA = C (CC) = [C*(CC*)-Ic] * (ASA) *

Similarly, AAs BB+M B(B* *= = M MB)-IB*M*M is hermitian if the non-

singular matrix M is chosen to be I .
mxm



2°7 The Rao Definition:

The definition of the pseudoinverse by C. R. Rao [77], also

grows out of his discussion of the solution of degenerate linear

systems. His definition of a "generalized inverse" is given in

terms of a consistent system of linear equations.

Definition 2.4: A generalized inverse of a matrix A of

order m byn is a matrix of order n bym denoted by A-, such that

for any vector y for which Ax = y is consistent, x = A-y is a

solution.

A generalized inverse so defined is not unique, however, for

many applications, as will be pointed out in Chapter 5 this is not

necessary.

The equivalence of definitions (2°5) and (2.4) is established

in the next theorem°

Theorem 2.5:

definition (2.4), then AA-A = A,

If A- is a generalized inverse of A by

and conversely.

.th
Proof: Choose y as the z column ai of A. Then the

equation Ax = ai is obviously consistent and hence x = A ai is

a solution° This implies that AA-s i = ai for all i, which implies

that AA-A = A. Conversely, if A- exists such that AA-A = A and

Ax = y is consistent, then AA-Ax = Ax or AA-y = y. Hence x = A-y

is a solution.

33
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We now establish how the generalized inverse given by definition

(2.4) can be used to obtain the Penrose pseudoinverse. This is the

conclusion of the next theorem.

Theorem 2.6: A generalized inverse A- as given in definition

(2.4) can be constructed in such a way that A- = A+, where A+

is the Penrose pseudoinverse of A.

Proof: Given A of order m by n, there exists nonsingular,

ortho_onal matrices P and Q nf n'ra,_'r_ m -nd n, _,_,_,,oi,,_ ........... ..[ _v ,.. ,..,. v _.,._.), 9

such that PAQ = D or A --p-IDQ-I where

n

I Ds 0 1
0 0

and D
S

is a diagonal matrix of order s and rank s. Define A =

QD-P where

--

DsI 0

0 0

"l - -
Then it follows that AA-A = p'IDQ = A. Also A-AA- = QD P = A .

_

Also, it is computational to confirm that (AA) = AA- and

(A'A) = A-A .



35

2.8 The Desoer and Whalen Definition

The following definition is an extension of the pseudoinverse

by Moore and Penrose, and is given from a range-null space point of

view. This approach is felt to be beneficial in that the definition

has a strong motivation, the concepts are illuminated geometrically,

the proofs are quite simple, the basis is eliminated, and the exten-

sion to bounded linear mappings with closed range between Hilbert

spaces is i,mmdiate.

Definition 2.5: let A be a bounded linear operator of a

Hilbert space X into a Hilbert space Y such that R{A) is closed.

A+ is said to be the pseudoinverse of A if

{i) A+Ax --x for all x in N{A) - R(A*) .

{ii) A+y = 0 for all y in R(A)--N(A*) .

(iii) If yl ¢ R(A) and y2 c N(A ) then A+{YI + y2) =

÷

A Yl + A+Y2 "

Since every finite dimensional inner product space is a Hilbert

space, it will suffice to show that the above definition is equivalent

to the Penrose definition over such a space. Since (i) defines

A+ on R(A), and (ii) defines A+ on R(A), A+ is uniquely defined

on Y = R(A) @ R(A). (i) implies that A+A is the identity map on R{A }.
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From (iii) we get AA+(Yl + y2) = AA+Yl + AA+Y2 = AA+Yl so that

AA+ is a projection operator on R(A). Also, if x = x I + x 2

where Xle N(A) and x2e N(A)_ we have A+A(Xl + x2) = A+AXl +

A+Ax2 = A+Ax2. But A+Ax2 = x 2 by (i). Hence, A+A is a pro-

jection operator on N(A) = R(A ). To show that these are ortho-

gonal we establish that AA+ and A+A are hermitian. Now (AA+)*

+* * i

A A . Let x = xI + x2 where xle N(A*) and x2e N(A*) , then

+* * +* * +* *

(AA+)*x = A A xI + A A x2 --A A x2. But, (i) implies that

+* *

A Ax 2 = x2. Now, AA+(x I + x2) = AA+Xl + AA+x2 = AA+x2 = x2. Hence

(AA*) * = AA+. Similarly, it can be established that (A+A) * = A+A.

Interpreting the Penrose equation, AA+A-- A, implies that AA+AA + = AA +

and thus that AA+ is idempotent and hence a projection operator on

R(A). Likewise, A+A is a projection operator on N(A). The fact

that those operators are hermitian implies that they are orthogonal

projections and thus the Penrose equations could be written more

compactly as

A+A =

PR(A)

PR(A+)

(1)

where PM is an orthogonal projection on M.

Since the equations in (i) are equivalent to those in the Desoer

and Whalen definition for finite dimensional Hilbert spaces, and also

equivalent to the Penrose equations in that case, it follows that

Definition 2.5 is equivalent to Definition (2.1) in that case. It might

be pointed out that equations (i) are essentially those given by Moore

in defining a pseudoinverse.
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2.9 The Chipman Definition

Before giving this definition we define what is meant by

complementary matrices.

Definition 2.6: Two matrices X and Y are said to be

complementary if the following two conditions hold:

(i) X and Y both have

Y=k;

(ii) The row _n_r_ n_ Y

common.

k coltmms, and rank X + rank

_,_A y have ""_" +_.... z '--,-; origin in

Then Y is said to be complementary to X, and vice versa. Further,

X and Y are said to be polar if condition (ii) is replaced by the

stronger condition

!

(ii)
!

XY = 0.

(the prime indicating transposition).

This states that the row spaces of X and Y are orthogonal.

Condition (ii) can be written formally as follows: uX + vY = 0

implies uX = vY -- 0. Thus no row of Y (or linear combination thereof)

can be linearly dependent on the rows of X, and vice versa. Condition

(ii) is implied by condition (ii), since uX + vY = 0 and

!

XY = 0 imply

1 I I !

vYY v = (uX +vY)Y v = 0

! !

and since vYY v is a vanishing sum of squares it follows that vY = 0 ,
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hence uX - 0. Every matrix X has a polar matrix Y (this does not

exclude the possibility that Y is the empty 0 x k matrix, or any

null matrix with k columns, in case X has rank k); a fortiori,

every matrix has a complementary matrix.

For definiteness, let X be n x k of rank p, and let Y be

m x k of rank q, where p + q --k. Let the row spaces of X and

Y be denoted X = {_l _ = aX} and y = {,_In = cY}; they are of dimen-

sion p and q respectively. Every such matrix X possesses a

!

complementary matrix Y, for any m > q; for let B = {b ] Xb = 0}

be the q-dimensional col_vn null space of X. Then an m x k matrix

Y can be chosen so that its rows, together with those of X, span

+ B = X + Y, and so that none of its rows are in_; then Y is

complementary to X. If the rows of Y are in B, then B = _ and

Y is polar to X.

Lenma 2.1: Let X and Y be complementary matrices. Then

there exist matrices A and B such that XB = 0 and rank YB --

rank Y, and YA = 0 and rank XA - rank X. Moreover,

I I _1%/IX(X X + Y Y) --0 .

Proof: Let X be n x k of rank p, and let Y be m x k

of rank q, where p + q = k. Define _ = n - p and _ = m - q.

Without loss of generality, let the first p rows X1 of X have

rank p; then the last _ rows X2 of X may be written X2 = NXI,

where N is _ x p. Similarly, let the first q rows Y1 of Y
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have rank q; then the last _ rows Y2 of Y may be written

Y2--MY1' where M is _ x q. Since X and Y are complementary,

the rows of X1 and Y1 form a basis for X + Y, and we may define

IIX1

Y1

(A 1 B1 )

where A1 and B1 are k x p and k x q respectively. Then

(A1 Bl) =

x15

YIA1 YIBI

iP 0 1

0 Iq

Now define the k x v and k x p matrices A2 and B2 by

! !

A2 = AIN B2 = BIM

so that we have

Ix11X = =

X2

Ip

N

X1 , Y =

!

A = [A1 AZ] = AI [Ip N ] , B = [B1

!

B2] = B1 [Iq M ]

where A and B are respectively k x n and k x m. From these

relations we obtain
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XA [ N,], Ip

X1 A1 [Ip N ] --

N NN

XB -- X1 B1 [IqM ] =
0 0

YA -- YI A1 [Ip N ] =

0 0

YB -- Y1 B1 M] --
!

M N,t

where rank XA-- p --rank X, and rank YB = q = rank Y, proving the

first part of the lenmm.

I ! !

To prove that X(X X ÷ Y Y)-IY = O, first we note that the matrix

W = [X] has rank k {since X and Y are complementary), whence
I ! !

Q ; W W = X X ÷ Y Y is positive definite and therefore invertible.

From the first part of the lemma we have

! ! ! I T

(X X + Y Y)B = Y YB --Y1 [I M ] ']
M

' ' _-lPre_Itiplying by X(X X + Y y)-i = we obtain
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I "i I t

= xB = xq Y1 [i M]0

!

I M

M MM

-1 t t t

implying XQ Y1 (I + MM) = 0. But I + MM is positive definite,

-i ' ' ' -i '
hence nonsingular, so XQ Y1 = X(X X + Y Y) Y1 --0, therefore

t t t l ! __r! tX(X X + Y y)-iy = X(XX + Y Y) 1 [I M ] = O.

the proof of the above lemma becomes greatly simplified, since YB = Iq.

We now state the definition given by Chipman [24].

Definition 2.7: Let X+ A+ be n x k, k x n matrices
P

satisfying the equations in theorem 2.1, and let U, V be given

s)nmnetric positive definite matrices of orders k and n respectively.

Define X = _/2 X+ U-I/2 and A = UI/2 A+ V -I/2 .

Then

(i) XAX = X

(ii) AXA = A

(iii) (XA)T = V'IxAv

(iv) (Ax)T = V-i AXU

(1)

If U = Ik and V = In, this definition is obviously equivalent

to that of Penrose. We shall denote the _ique matrix A satisfying

the above by A-- X# for given U and V.
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The following theorem provides an alternative proof of the

existence and uniqueness of the pseudoinverse of a matrix.

Theorem 2.7: Let X and Y be complementary matrices, and

define the matrices

X# (X' ' '= X + Y Y)-Ix

Y# (X' ' '= X + Y Y)-IY .

1_nen

(i) X# and Y# satisfy properties (i), (ii), and (iv)

of Theorem 2.1, and property (iv) of (1) with

u= Q-I _-(x' 'X + yy)-i .

(ii) X# and Y# satisfy property (iv) of (i) for any

!

given U, if and only if XUY = 0 .

(iii) In order that X # (resp. Y#) be unique for any

given U, it is necessary and sufficient that Y

!

(resp. X) satisfy XUY = 0 .

Proof: i. Defining W = [$], we have

= ' _Iw, , , , , [X#y#]W# (WW) = (X X + Y Y)-I[x Y ] =

whence

W#W = X#X + Y#Y = Ik • (2)

xY# x(x' ' 'From lemma 2.1, = X + Y y)=iy' _- = 0, so successively

premultiplying (2) by X and Y, and postmultiplying by X# and Y#,
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properties (i) and (ii) of Theorem 2.1 are verified for X and Y.

Properties (iv) of Theorem 2.1 and (iv) of (1) are inm_diately

verified, the latter with U = Q-I .

ii. Now we show that X#XU and Y#YU are sy_netric if and

, , , X#XUonly if XUY = 0. Since Q = X X + Y Y is s)qmnetric, =

Q-Ix'xu is synmetric if and only if QX#XUQ = X#XUQ is synm_tric.

! ! ! !

This in turn is equivalent to the condition that X XUY Y = Y YUX X,

which is clearly also necessary and sufficient for the synunetry of

Y#YU. (In the case U = I, this simply states that X#X and Y#Y

! !

are s)nmnetric if and only if X X and Y Y commute.) Now

! I ! ! 1 !

XTJY = 0 implies X XUY Y = 0 = Y YUX X , so the condition XUY --0

is obviously sufficient.

To see that it is also necessary observe that X#' ', XX=

!

(XX#) X = XX#X --X from (iv) and (i) of Theorem 2.1, and similarly

' # ' # ' 'y#, ' ,YYY = Y (YY) = Y V = Y .

Therefore

1 ! I !

XXUYY = YYUXX

implies

,=X #' , , =XUY X XUY'YY # = X#'Y YUX'XY # 0

since X#' ' ' ' = XY #Y = X(X X + Y y)-iy' = 0 from lemma 2.1.



iii. It is clearly sufficient to show that X#

!

and only if Y satisfies XUY = 0. Let Y1 and Y2

matrices both complementary to X, with row spaces Y-I

is unique if

be two

and Y2
!

respectively. Define Qi = X'X + YiYi and X._ -i 'I = Qi x for

# #
i -- i, 2. In order that Xi = X2 it is necessary and sufficient that

' -I ' ' -i ' ' -i ' ' -I ' ' #' ' '
X = QIQ2 x = x xQ2 x + YIYIQ2 x . But X XQ2 X = X X2 x = X

from property (i) of Theorem 2.1, so this is equivalent to

iYiQ -1X ' #,Y = 0. Premultiplying this last equation by Y1 , and
#t t

recalling that Y1 YIYI = Y1 from properties (iv) and (i) of Theorem

2.1, we obtain YIQ2-1X ' = YiX_ = 0 as a necessary and sufficient

# # #

condition that X I = X2. Now Y2X2 = 0 from lenma 2.1, so Y1 and

#,
Y2 (which have the same rank) must both be orthogonal to X2 (as well

#,
as to X1 by a similar argument). Thus uniqueness is equivalent to

the condition = Y2' which is guaranteed when Y1 and Y2 are

both polar to X, in which case Y1 = Y2 = _ (the colunm null space

of x).

It remains to be shown that the condition Y1 = _2 is in tum

equivalent to the condition that Y1 and Y2 both be orthogonal to

' ' # satisfy (iv)XU, i. e., that YIUX = 0 and Y2UX = 0. Let X2
!

of (i) for some U; then by assertion ii of the theorem, Y2UX = 0,

and we also have

44

whence

, YIUX'X_' ' YIUX 'YI X XUX = X =

# !

YIX2 = 0 implies YIUX = 0. This proves the necessity of the
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! 1

condition YUX = 0. For the sufficiency, assume first that Y2UX -- 0,
#

whence X2 satisfies (iv) of CI) by assertion ii of the theorem; then

using property (ii) of Theorem 2.1, we obtain

# # ' #' -i #Y1 X = YIX2XX 2 = YIUX X2 U X2

whence YIUX = 0 implies Y1X = 0, which was to be shown.

We may conclude with a number of remarks concerning this theorem.

Remark I. The special case of greatest interest is that in which

U = I. Then the s_..vnm_trynf_..._4X, ,._h......_._o the ....;...I^...^ ,_^

I I

conTnutativity of X X and Y Y, is in turn equivalent to the ortho-

I

gonality of X and Y. The condition that Y satisfy XY --0

is just one way to obtain uniqueness; the essential property is that

X# is unique with respect to a choice of Y as long as the rows of

Y are such as to span a given space Y which is complementary to X.

I

This is accomplished equally well by the condition XUY = 0, i.e.,

that Y be orthogonal to XU. The Moore-Penrose pseudoinverse of X

can therefore be defined as the matrix X+ (X' '= X + YY)-Ix', where

Y is any matrix polar to X. It has the special property that

' y_X+YX = = 0, whence the column space of X+ is the same as the row

' yx #space of X. On the other hand if YUX = = 0, then X is

orthogonal to YU but X#' is orthogonal to Y, so the colunm space

of X# is tilted away from the row space of X.
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Remark 2. If V and W are any s)am_tric positive definite

!

matrices of orders n and m respectively, and if XUY = 0, then

the matrices

X# = (X'V-Ix + y'w-iy)-Ix'v -I

Y# (X'V-Ix + Y W Iy)-Iy'w-I

satisfy (i) with W replacing V in the case of Y#. This follows

irmuediately by applying Theorem 2.7 to the matrices X = V-I/2x and

w-i/ 

Remark 5. Theorem 2.7 could just as easily have been established

in terms of some n x q matrix W or rank v = n - p, such that

t !

[W X] has rank n. Then P = _V + XX has full rank, and the matrix

t ! ! -1

X (WW + XX ) is the generalized inverse of X satisfying (i), (ii),

and (iii) of Theorem 2.1, and (iii) of (i) with V = p-i .

' ' '(WW' XX' -i X+ ' 'If W X = 0 and XY = 0 then X + ) = = (X X + Y Y)-Ix'.

For the special case k = p and q = v, [W X] is itself invertible.

Remark 4. Since XX# is idempotent of rank p and YY# is

idempotent of rank q, if X is n x k of rank p = n, then

XX # X(X' ' Ip;= X + Y Y)-Ix' = and if Y is m x k of rank q = m, then

! t

Y(X X + Y Y)-Ix' = lq. These formulas are useful in applications.
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Other formulations of the pseudoinverse of a matrix have appeared

in the literature. A formulation due to Scroggs and Odell is given

special attention in Chapter 4. Other formulations not included in

this chapter will possibly be covered in the properties of the Penrose

pseudoinverse or where felt to be so closely related to one of those

given to merit not being duplicated. From reading this chapter one

might see how to modify the formulations of the pseudoinverses given

to meet his own needs.
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PROPERTIES

3.I Elementary Properties of A+

In this section many properties of the Penrose pseudoinverse of a

matrix are given. More elegant and shorter proofs may be obtained in

some cases by working with the Desoer and Whalen definition of the

pseudoinverse which is given from a range - null _ space point of

view, however, an attempt is made here to keep this section on as

elementary a level as possible so that the results will be compre-

hended with a minimum of preparation and effort.

We now list two properties of the conjugate transpose of a

matrix which will be used frequently in establishing properties of A+.

a) If A and B are matrices such that AB is defined,

then (AB) = B A

b) If A is a matrix, then (A) --A .

Theorem 5.I: For any matrix A, the matrix correspondence

A ÷ A+ satisfies the following properties:

PI) (A+)+ = A .

Proof:

exists a unique (m by n)

By Theorem 2.1, for the n by m matrix A+ there

matrix (A+)+ that satisfies the

following identities:

48
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A÷CA")+ A+ = A+

CA+)÷A÷ CA+)÷ : CA+)"

[A+ CA+)+]* =A+CA+)+

[CA+)+A+]* = ca+)+a+

However, replacing (A+)+ by A in the above identities,

they become the four defining identities given in Theorem 2.1.

Since the matrix X in Theorem 2. I is unique, it follows that

A = (A+)+ .

* + *

P2) (A) = CA+) = A+*- = A *+ .

Proof: By Theorem 2.1 for the matrix A , there exists

,
a unique matrix A satisfying the following identities:

, * + * *

A (A) A =A

(A*)+ * , + * +A (A) = (A)

* _ * * +
[A (A*)+]=A (A)

However, A (A+9 A

also (A+)*A-CA+) *

[(A*)+ A ] = (A)+A*

= (AA+A) * Property a of * .

= A Theorem 2.1

= {A+AA+) * Property a of

= (A+)* Theorem 2.1
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Likewise, the identities [(A+)*A*] *-- (A+)*A * and

[A*(A+)*]* A*(A+)*= can be verified. Hence, due to the uniqueness,

it follows that (A+)* (A* +-- ) •

P3) A+AA * = A*

Proof: A+AA * -- (A+A)*A* Theorem 2.1

= (AA÷A)*

= A

Property a of .

Theorem 2.1

P4) A*AA + = A*

Proof: A*AA+ _- A*(_+)* Theorem 2.1

= (AA+A)*

= A

Property a of .

Theorem 2.1

PS) _+A*- A+*

Proof: AA+A+* -- (AA+)* A+* Theorem 2.1

__.(A+_+)*

= A ÷*

Property a of .

Theorem 2.1

P6) A+*A+A : A+*

Proof: A+*A+A = A+*(A+A)* Theorem 2.1

: CA÷_÷)"

= A+_

Property a of

Theorem 2.1



P7) A*+ A A = A

Proof: A*+A*A = (AA+)*A

_- AA÷A

= A

,
P8) AA A*+ = A

Proo._._ff:AA A = A(A+A)

= AA+A

= A

P9) A*A+*A + = A+

Proof: A*A+*A + = (A+A)*A+

_-A+AA÷

_- A +

PI0) A+A+*A * = A+

Proof: A+A+*A * = A+ (AA+)*

_-A÷AA÷

= A +

Property a of

Theorem 2. i

Theorem 2.i

Property a of

Theorem 2.1

Theorem 2.1

Property a of

Theorem 2.1

Theorem 2.1

Property a of

Theorem 2.1

Theorem 2.1

51
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* + = A+*A +Pll) (AA) and (A'A) + A+A *+

Proof: By Theorem 2.1 there exists a unique matrix (AA*) +

satisfying the following identities:

AA(AA)AA --AA

* * + * +

* * * +

[AA*CAA*)+] = AA (AA)

[(AA)+AA*]* = (AA*)+AA*

It is computational to confirm that replacing (AA*)+ by

A+*A + in the above yields identities. Hence by the uniqueness

* +

of (AA) , the first conclusion follows. The second result is

established in a similar manner,

PlZ) (m*)+Cm *) -- x_÷

Proof: (AA*)+AA * = A+*A+AA * Pll

A+*A *= P3

_- C_÷)*

P13)

Property a of .

If a _ 0, then (oA) + = a-lA+ .

Proof: Direct substitution of a-iA+ into the four defining

equations for (aA)+ establishes this result due to the uniqueness.

P14) 0÷ = 0?
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Proof: For any size null matrix O, OT satisfies the

defining equations for O+ given in Theorem 2.1. Hence by the

uniqueness of O+ O+ = OT
)

PI5)
If D = (dij) is a square diagonal matrix, then

D+ = (d_.j) where d'+'Ij = 0 for i _ j, d+ij = 0

if dij = 0 and d+ij = d-1"11 if dii _ 0.

Proof: D+ as given satisfies the four defining equations

in Theorem 2.1 and hence is the unique pseudoinverse of D.

P16) If A = BC where the cohmms of B are linearly

independent and the rows of C are linearly indepen-

dent, then A+ = C (CC)-I(B*B)-IB* . In particular,

* , , -2C =if B --C , A÷ = C (CC) and A÷A AA÷

Proo___ff: It is computational to confirm that
* * -Ix : c (cc) (B B)-IB *

is a solution of the four defining equations for A+ in Theorem 2.1.

+ A+Hence, by the uniqueness of A , X = . The second part follows by

direct substitution also.

PI7) A+ = (A*A)-IA * if the columns of A are linearly

independent.

Proof: Follows i,lnediately from PI6.

* * -i
P18) A+ = A (AA) if the rows of A are linearly

independent.

Proof: Follows immediately from PI6.
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P19) A+ = A-I if A is square and nonsingular.

* *-I * *-IA-I A-IProof: By PlS, A+ = A (AA) = A A = .

P20) I_ffA+ conm_tes with some power of A an__d

i__ssany nonzero eigenvalue of A corresponding

to the eigenvector x, then 1-1 is an eigen-

valu______eof A+ correspondin_ to the eigenvector x .

Proof: Let A+ conmmte with An for some integer n > 0,

and let X # 0 be an eigenvalue of A corresponding to the

eigenvector x so that

Ax = tx,

-IAxX = A

and

Then

A+A n = AnA + "

A+x = X'IA+Ax

= X-2A+A2x

-_ X-nA+Anx ,

by repeated substitution of x-lAx for x .

Thus
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A+x _- X-nAnA+x

= x'n- IAnA+Ax

= x-n"iAn- IAA+Ax

= h-n-iAn-lAx

= A-I l-nAnx

= _-i x .

Note that this result could be slightly strengthened by

replacing the hypothesis that A÷ con_nutes with some power of

A by A+A n+l = A2 for some m •

P21)
#t

The row space of A+ and A are identical. Also

the column space of A+ and A are identical.

Proof: To establish these results we make use of the fact

that if A and B are such that AB is defined, then the row

space of AB is contained in the row space of B and the column

space of AB is contained in the column space of A. It follows

that the row space of A+A+*A * is contained in the row space of A .

However, A+A+*A* = A+ by PI0, thus, the row space of A+ is

contained in the row space of A . Similarly, the row space of

A*AA + is contained in the row space of A+. But, A*AA + = A*

by P4. Therefore, the row spaces of A+ and A are identical.

A similar argument using the equations in P9 and P3 establishes

that the coltmm space of A+ and A are identical.
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P22) A, A+ and A all have the same rank, r(A) .

Proof: Using the fact that the rank of a product is at

most the rank of any one of the factors, we have that

r(AA+A) < r(A +) . But, AA+A= A so that r(A) _< r(A +) . Hence,

r(A) = r(A+). Also r(A) = R(AA*A *+) since by PS, A = AAA *+

But r(AA*A *+) < r(A*). Hence, r(A) < r(A*). Now r(A*) =

r(A*AA +) since A = A*AA + by P4o But r(A*AA +) _< r(A) . Hence,

r(A) < r(A). It follows that r(A) = r(A ) .

P23) Let A and B be any matrices with the product AS

+

defined. Let B1 = A+AB and A1 = ASlBI . Then

÷-

Proof: The product AS can be written as

÷

AS = AA+AB = AB 1 = ABIBIB 1 = AIB 1 •

Let Y = AS = _B 1 and let X= BIA 1 . Then it is only necessary to

show that Y and X satisfy the equations in Theorem 2.1. From

[ + +the definition of A, we have that _BIB = ABIBIBIB 1 = A1 .

+ +

YXY = _BIBIAIAIB 1 =Now YX = AIBIBIA 1 = is hermitiano Also

+

AIAIAIB 1 = AIB 1 = Y and

++ + + ++ + iA_XYX = BIAI(_BIBI)AI = BIAIAIA 1 = B = X .

In order to show that XY is hermitian, we observe first that using

the definitions of A1 and B1 that
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+ + +

hermitian, BIBIAI_ -- _A I. Substituting A+AI for BIB 1 gives

_A 1 + +o AAIAIAI : A÷AI_d _o _ - B1B_ .

+ + + + iFrom this it now follows that XY = BIAI_B --BIBIBIB 1 = B B1

is hermitian. Since it has been shown that Y and X satisfy the

defining equations for the Penrose pseudoinverse, X = Y+ . But

x :

P24) If A A = PDP , where PP --P P = I , and D is

diagonal, then A+ = PD+P*A * .

* * A*A PDP*Proof: Suppose AA = PDP , then ( )+ = ( )+ .

Letting X PD+P * in the defining equations for (PDP*) += we have

* + * . DD+DP * *PDP PD P PDP -- P = PDP ,

pD+P*pDp*pD+p* = PD+DD+P* = pD+p *

and

Hence

and thus

[pD+p*pDp*] * = [PD+DP*]* = p(D+D)*p* = PD+DP* = pD+P*pDp * ,

[pDp*pD+p*] * = [PDD+P*]* = P(DD+)*p * = PDD+P* = pDp*pD÷p * .

* ÷
(PDP) = PDP*÷

(A'A) + = PD+P * .
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* _- A+A *+Multiplying by A and noting that (A'A)+ by Pll we

have

A+A*+A* = pD+P*A * "

But by P2 and PI0 the left member is A+ . Hence the conclusion that

A+ = pD+p'A*

P25)

i _ j, then

If A = rAi, where AiA j = 0 and AiA j = 0 whenever

A+ = zA_ o

Proof: Assume AiA j = 0 and AiA j = 0 whenever i _ j.
*.+*.+ + +* *

Then, since A; = AjAj Aj and A_ = A_IAi Ai it follows that

A._A. = 0 and A°A +. = 0. This implies that all the cross product terms3 1)

in AA+ are zero, and thus AA+ = _AoA +. A+A = r A+.A. Hence,
1 1 ' 1 1 "

by direct computation the four defining equations for A+ are found

to be satisfied by r.A._ . By the uniqueness of A+ we have that

A+ = _A._.

P26) If A is normal, A+A = AA+ and (An) += (A+) n .

Proof: By Pl0 A+A+*A * --A+ ° Applying P2 to this gives A+A*+A * = A+

A'A) +A*A * *and Pll gives ( = A+A. Also, since A is normal A A = AA

so that A+A = (AA*)+AA*. By Pll (AA*)+ = A*+A + and A*+A + = A+*

by P2. Hence, since A+_A+A = A by P6, we have A+A = A*+A+AA * =

A+*A * = (AA+) = AA+ . To establish the second part we note that the
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first part implies that (A+A)n= An(A+) n -- (A+)nAn . Direct

substitution of (A+)n in the defining equations for (An)+ yields

the desired result.

P27) AB = 0 if and only if B+A + = 0.

Proof: Assume AB = 0 . Premultiplying by A+ and post-

multiplying by B+ we get A+ABB + = 0. Taking conjugate transposes,

(BB+)*(A+A) * = BB+A+A --0 . Multiplying by B+ and A+ on the

left and right, respectively gives B+BB+A+AA + -- B+A + - 0 .

Conversely, if B+A + = 0 we have that BB+A+A = 0 and thus

(A+A)*(BB+) * = 0 which implies A+ABB + = 0 . Hence AA+ABB+B =

AB=0 o

P28) Let A be an ruby n matrix, and x any n-component

coluaa_ vector. Then

Ax -- 0 if and only if x*A + --0.

Proof: Assume Ax = 0. Then A+Ax = 0, which implies that

x*(A+A) * = 0 or x*A+A = 0. Multiplying by A+ we bet

x*A+AA + = x% + = 0. Conversely, if x*A + = 0, then x*A+A-- 0

or x*(A+A) * = 0 which implies that A+Ax--0. b_tltiplying by A

yields AA.+Ax = Ax = 0 .



P29) If U and V are unitary, (UAV) + = V*A+U * .

Proof: _By direct substitution of V*A+U * in the four

defining equations for (UAV)+ we obtain the desired result.

P30) If P is hermitian and idempotent, (PA)+ -- Q+P

whenever either PQ --Q or P conm_tes with

Q, Q+Q and QQ+.
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Proof: By direct substitution into Theorem 2.1.

P51) Let C be a square matrix in Jordan canonical form.

(C - ul)(C - ul)+x = 0 if and only if x is an

eigenvector of C corresponding to the eigenvalue u.

Proof: Assume (C - uI)(C - uI)÷x = 0. Since

X = R(C - uI) ON[(C - uI) +] we can write x = x 1 + x 2 where

Xle R(C - uI) and x2¢ N[(C - uI)÷]. Then (C - uI)(C - uI)+(Xl + x2) =

x 1 ; o so that x=x 2. Now N[(C-uI) +] = N[(C- uI)*] =

N[C - uq].

Hence (C - uI)x --0 or C x = _x o

Assuming the converse, we have that C x = ux or (C - u-I)x = 0.

This implies that xE N[(C - u-I)] = N[(C - uI)+]. Hence

(C - uI)(C - uI)+x = 0 .
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P32) Let {Ai} , i -- 1, 2, . . . , k be arbitrary ruby n

matrices. Then

k k

- r. ATA_)+ ( Z AjT.Aj)= 0
Ai Ai ( j=l J J j=l

for all i = i, 2, . .., k.

k
Proof: Let S = z AT.A. and consider

j=l 33

* + *

AiA i - S SAiA i. Since S is normal,

and thus we can write

S+S = SS+

* * * + *

AiA i - S+S AiA i ; AiA i - SS AiA i .

Now SS+ is an orthogonal projection on the range space of S which

* + * *

contains the range space of AiA i . Hence, SS AiA i ; AiA i , so

that AiA i - S÷S AiA i = 0. Taking the conjugate transpose of both

sides of this equation and using the fact that if A B = 0 with

the colu_'ls of B in R(A), then B = 0, the result follows.

P33) Let A be an m by n matrix, m Z n, then

lXIm - AA÷I = xm'nJxin - A+AI.
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Proof: First we give a simple proof for the case m = n.

Let the zeros of [_In - A+AI be distinct, say Xl, . . . , _ .

If _ = 0 is an eigenvalue of A+A it is an eigenvalue of AA+ ,

since [A+A[ = ]AA+[. For Ii _ 0, xI _ 0, it follows

from A+AXl - _x I that AxI _ 0. Hence AA+AXl -- AIAXl,

so that A1 is an eigenvalue of AA+. Thus every eigenvalue of

A+A is an eigenvalue of AA + , and the result holds for m = n.

If multiple zeros of [XIn - A+A[ exist, one need only add small

quantities to the elements of A and A+ such that the zeros

of ]Ifn - A+A[ separate and become distinct. Thus

IXI n - A(e) A+(¢)I = [XI n " A+(c)A(c)l with A(o) = A ,

A+(o) = A+ , and c represents a set of small elements.

From continuity considerations the result holds for m = n.

We consider next the case m> n, or m = n + p,

p > 0. Let M be the augmented matrix M = (A, $i) with

$i the m x p null matrix, and let

A+

N ____.
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with ¢2 the p x m null matrix, ¢i = ¢_"

matrices of order m. It follows that

Thus, M and N are square

]XIm - M_l[ = [XIm - NM[.

One notes that

A+ + A+ (A+A
= (A,@1)(¢2) = AA , NM= (@2)(A,@I) = @4

Hence (1) becomes

(1)

- AA+I =[XIm tin - A+A @3[ = xm'n!_In A+A!

@4 _Ip]

which concludes the proof.

It should be noted that P55 holds for the more general case where

A+ is replaced by any n x m matrix.

P34) The following conditions are each necessary and sufficient for

(AB)+ = B+A + .

I) A+ABB*A * = BB A and BB+A*AB = A AB

z)

3)

4)

Both A+ABB * and A*ABB + are hem£tian

A+ABB*A*ABB + = BB A A

A2A 1 = 0, B2B 1 = 0 where

A1 =ABB+ , A2 =A - AI ,

BI = A+AB , B2 = B - BI .
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If A and B are othemise arbitrary matrices such that AB

is defined, (AB) + = B+A + if and oniy if both the equations

A+ABB*A * * ,= BB A (2)

and

BB+A*AB = A AB (3)

are satisfied.

* * *+

Proof: Multiplying A+ABB*A * = BB A on the right by (AB)

and using C+CC * = C*CC + = C*, and CC*C *+ = C*+C*C = C , in the

form

, ,+

(AB)(AB) CAB) = AB ,

gives

B+A+AB= CAB)*CAB)*+= CAB)+(AB) • (4)

Similarly, taking transposes of both sides of C3) gives

B*A*ABB + * ,= B A A ,

and then multiplying on the right by A+ and on the left by (AB)*+

= *and using C+CC * C*CC + = C , and CC*C *+ = C*+C*C = C , leads to

the equation

ABB+A + = ABCAB) + . (6)

Recognizing that (AB)(AB) + and (AB)+CAB) are the orthogonal

,
projectors on the range spaces R(AB) and R((AB) ), respectively,
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(4) and (6) express the fact that B+A+ is the generalized inverse

of AB, as defined by Moore [66].

Conversely, (AB)+ = B+A+ implies

* * B+--ABB*A" *BA = A .

multiplying on the left by ABB B and using B*BB + = B gives

* A+A) * ,ABB (I - BB A = 0,

where 8 denotes a null matrix. As the left member is Hermitian and

I - A+A is idempotent, it follows that

A+A) * ,(I - BB A = O,

which is equivalent to (2). In an analogous manner, (3) is obtained.

P35) (AB)+ --B+A + if and only if both A+ABB * and A*ABB +

are Hermitian.

Proof: If A+ABB * is Hermitian, we have

A+ABB * = BB*A+A ,

and multiplication on the right by A gives (2).

multiplication of (2) on the right by A*+ gives

A+ABB*A+ A = BB*A+A °

Conversely,

(7)

Since the left member of (7) is Hermitian, the right member is also.
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In a similar fashion it can be shown that (3) is equivalent to

the statement that A%B + is Hermitian.

It will be noted that an equivalent statement to the condition

in P35)is that A+A and BB comte and also A A and BB+ cormaute.

P36). (AB)+ = B+A + i£ and only if

A+ *A* B+ * •ABB --BB A A . (8)

Proof. : Multiplying (8) on the left by A+A gives

A÷ABB*A*ABB + _- A+ABB*A*A . (9)

Combining (8) and (9) gives

A+ABB_A_A = BBAA ,

and multiplication on the right by A+ gives (2). An analogous

process leads to (5), which is equivalent to (3).

On the other hand, if (2) and (3) hold, multiplying (2) on the

right by A and then using (5) to transform the left member gives (8).

Equations (2) and (3) have a sinple interpretation in terms of

range spaces. They assert, respectively, that R(A ) is an invariant

space of BB and that R(B) is an invariant space of A A. In

some particular cases this interpretation leads to a characterization of

those matrices B that satisfy (AB+ --B+A + for a given A. For example,

if A is of full colunm rank, A+A -- I and (2) is immediately satis-

fied. Then (3) holds if and only if B is a null matrix or R(B) is

the space spanned by some set of eigenvectors of A A .
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P37). CAB)+ - B+A+ if and only if both the equations

A+AB = BCAB)+AB (10)

and

BB+A * = A ABCAB) + (ii)

are satisfied.

Proof: Multiplication of (2) on the right by (AB)*+ gives

(10), and conversely multiplication of (10) on the right by CAB)

gives (2). Similarly it can be shown that (II) is equivalent to (5).

P38). A necessary condition for (AB) + = B+A + is that

A+A and BB+ co.mute.

Proof: Substitution of B+A + for (AB)

cation on the right by B+ gives

+
in (10) and multipli-

A+ABB + = BB+ A+ ABB + .

As the right member is Hermitian, the conclusion follows.

That the condition of P38) is not sufficient is clear from the

example:

A = B -- (AB)+ = (0 1) B+A + = (-1 1) .

1

As A is nonsingular, A+A = A-IA = I, and the condition is fulfilled.

k_
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It is easily seen that the con_utativity of A+A and BB+

is equivalent to either of the conditions

A+ABB+ A = BB+ A

and

BB+A+ =A+AB.

These equations can be interpreted as asserting that R(A ) is

the direct sum of a subspace of R(B) and a space orthogonal to

R(B) and that R(B) is the direct sum of a subspace of R(A ) and •

a space orthogonal to R(A ). These observations reveal something

about the structure of matrices A and B that satisfy (AB)+ = B+A +. It

is easily seen that (2) and (3) are equivalent to the following

two equations :

(I - A+A) BB A+ A = e. (12)

(I - BB+)A*ABB + = O . (15)

Equation (12) shows that if B is resolved into the two component

matrices,

B1 = A+AB B2 = (I - A+ A)B ,

then not only do we have BIB 2 = e as expected, but also B2B 1 = O .

,
Similar remarks apply to the resolution of A into

AI = BB+ A A2 = (I - BB+)A * .
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5.2 Representations fo___rth__eePseudoinverseof a Partitioned Matrix

Let A = (Ak.1 ak) where ak is the kth colun_ of A and Ak_ 1

is the submatrix of A consisting of the first k-i colunms.

Let dk = A+k_lak and ck = ak - Ak_idko Then

whe re

A+k_l - dk bk}

A+ = (i)

bk

+

i ck , if ck _ 0
bk = (2)

* -I * +

(i + dkdk) dkAk_l, if ck --0

It is computational to establish that this form of A+ satisfies the

four defining equations intheorem 2.1.

The form of A+ will now be extended to obtain representations

for the pseudoinverse of matrices A =(U, V). We begin by combining

(I) and (2) into a single expression.

+ * -I<Since ck is a single cohBmlvector, ck _ 0 in, lies ck = (CkCk)

+ + +

and thus CkC k = I. Further, ck = 0 implies Ck = 0 and ckc k = 0.

Then we can rewrite bk as

+ + * -1 *+

bk = ck + (i - CkCk) (i + _) dkAk_ 1 (3)

and obtain a single expression for the cases ck = 0 and ck # 0 in (2).



7O

Combining (1) and (3) then gives

A_-I + + + + * +* + '-Ak_lak%-Ak_lak(1-ckck)kl k .lAk_l

+ + * +* +

ck + (1 - CkCk)klak__iAk_ 1

(4)

where kI designates the quantity (1 + d_dk)-i and a_A__*1 is

utilized in place of d k. The expression in (4) exhibits the structure

of the representations for the generslizea inverRe nf matrices A = ru vl
................ . L_, ,J,

£

c k and

and let

Consider an arbitrary matrix A -- [U, V],

and k - £ coltmms, respectively, 0 < £ <=k° Corresponding to

kI in (4) let C = (I UU+)V and K1 -- (I + V*U+*U+V) -I,

U+ _ U+VC + _ U+V(I - C+C)KIV*U+*U +"

', +, +

C+ + (I - C+C)KI v U U

where U and V have

CS)

Then we have

Theorem 3.2 A necessary and sufficient condition that X1 = A+

is that the matrices C+C and V*U+*U+V commute.

Proof: It will be shown that A and X1 satisfy the de-

fining equations in theorem 2.1, where the commutativity of C+C and

*

V*U+*U+V is utilized in order to conclude that (XIA) = XIA .
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Using the definition of C and the relation CC+C - C to simplify

the resulting expression, block multiplication gives

AX1 = UU+ + CC+ .

Thus, since both UU+ and CC+ are hermitian, (AXI)* = AX 1 .

Now u+c= (u+ - u+uu+)v= 0

Whence

(6)

implies C+U = 0, by (PI) and (P27).

UU+V + CC+V = UU+V + CC+C = UU+V + C = V ,

and the product AXIA = (AXI)A becomes

AXIA = [(UU+ + CC+)U, (UU+ + CC+)V] = [U, V] = A .

Similarly, XIAX 1 = XI(AXI) reduces to

XIAX I =

P

U+ . U+VC+

C ÷ ÷

- U+V(I - C+C)KIV*U+*U +"

(I - C+C) KIV*U+*U +

since U+(LFU+ + CC+) = U+ and C+ (UU+ + CC+) = C÷ .

Finally, with C+U = 0, C+V = C+C and U+*U+U = U+* (U+U) *

(U+UU+) * = U+* , the product XIA becomes

XIA

U+U _ U+V(I
+ * +*

C C)KIV U U+V(I - C+C)KI

+ * ÷*

(I C C)KIV U I - (I C+C)KI

(7)
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* +* ÷

where KIVU UV-- I K1 by definition of

C+C and V*U+*U+V commute. Then

K1 • Suppose now that

(I - C+C) (I + V*U+*U+V) : (I + V*U+*U+V} (I - C+C) ,

and so

KI(I - C+C) = (I - C+C)K1 .

Since both K1 and I - C+C are hermitian, this implies

[KI(I - C+C)]* = KI(I - C+C) ,

and it follows in (7) that (XIA) = XIA .

(8)

(9)

Thus we have shown that A and X1

AX1A = A, XlAX 1 = Xl, (AX1) = AX1 and

and V*U+*U+V com_ute, and so XI = A+ .

satisfy the relations

(XIA) --SIA, provided C+C

Conversely, if X1 = A+ i then (X1A)

once from (7). Hence (8) holds, and C+C

The existence of matrices A = [U, V]

= XIA, and (9) follows at

commutes with V*U+*U+V .

for which C+C and V*U+*U+V

do not commute can be shown by simple examples. Consequently, X1 does

not provide the most general form for A+. Before considering the general

form, however, we will establish four corollaries to theorem 3.2. Assume

A has the form A= [U, V], and again let C = (I - UU+)V and

KI = (I + V*U+'U+V) -1.

Corollary 3.1

A+ __[ u+_U÷ zV*U+*U÷
C+ *+*+

+ KIV U U

(10)



if and only if C+CV*U+*U+V = 0.

Proof:

and X1 = A+.

and thus

If C+CV*U+'U+V = 0, then V*U+*U+V and C+C commute,

Also, C+CV*U+'U+V = 0 implies C+*V*U+'U+VC + = 0

?3

U+VC + = 0.

Whereupon X1 in (S) reduces at once to the right hand side of (10).

Conversely, if A+ has the form given in (10), then it follows

from the equation ._+A = A that

(11)

UU+VKIV*U+*U+V * +, +UU+V - + VC+V + VKIV U U V = V.

• +* +

Using the relations K1 - I - KIV U U V and C+V = C+C; the definition

of C now gives

and so

Hence

and

C(I - KI) +VC+C = C

C+C (I KI) = 0 .

C+C (I + V*U+*U+V) = C+C

*u÷*u÷vC+CV = 0 .

Note in Corollary 3.1 that C+CV*U+*U+V = e is equivalent to the

condition VC+V = C. If C+CV*U+*U+V = e, then we have, using {11),

VC+V = VC+C = VC+C - UU+VC+C = CC+C = C .
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Conversely, if VC+V = C, then

and thus

v*u+*u÷vc+cv*u+*u+ +v *÷*÷= VC =VU UC = e ,

C+CV*U+*U+V= e.

For the special case in which C = O,

Corollar Z 5.2

u _U+WlV*U+*u+....*,.+*..+

_i v u u

if and only if C = 0 .

Corollary 3.i reduces tO

(12)

Proof: That (I0) reduces to (12) when C = 0 is obvious.

Conversely, if (12) holds) then AA+A = A implies

UU+VKIV*U+*U+V * +* +* +UU+V - +VKIVU U UV = V ,

which reduces to C(I - KI) = C. Hence CK1 = 0 and so C = 0 .

* +* +
Suppose now that C+CV*U+*U+V = V U U V. Then again

V*U+*U+V and C+C commute and we obtain two more special cases of

theorem 3.1,

Corollary 3.3

_ ._

U _cI+VC+ I
(13)

if and only if
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C+CV*U+*U+V= V*U+*U+V• (14)

Proof: From P4), B*BB + = B for every matrix B. Hence, taking

B = U+V, the relation C+CV*U+*U+V = V*U+*U+V implies that

C+CV*U +* = V*U +* , (15)

and using (8) gives

(I - C+C)KIV*U+*U + = 0 .

Whereupon X1 reduces to (13).

Conversely, if A+ has the form given in (15), then A+A becomes

A+A =

U+U U+V( I - C+C) I
o C+C

and (A+A)* = A+A implies (I- C+C)V*U+* = e. This gives (15),

from which the converse follows.

Analogous to the equivalence between the conditions C+CV*U+*U+V = e

and VC+V = C noted above, it is easily seen that C+CV*U+*U+V = V*U+*U+V

*+*+
is equivalent to having VC+V = V. If. C+CV*U+*U+V = V U U V, then it

follows from (iS) and the definition of C that

, , *U+*U *V C+CV*U+*U * = V -V

or

* C+C * , ,V - (V -C) -- C .

Thus V* C+CV*- = O and so V = VC+C = VC+V .
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Conversely, if VC+V -- V, then

v*u+*u+v __v*u÷*u÷vc*v= v_u÷*u÷vc÷c,

which implies

c+_*u+*u+v= v*u+*u+v.

Note, in particular, that whenever C has full coltm_ rank we have

C+ = (C*C)-Ic *, by (P12), and thus

and A+ has the form given in (13).

C+C = I. Hence VC+V = VC+C = V,

Clearly, this is the case in the

+

form for A+, (I), when ck # O and bk = ck in (2). On the other

hand, when ck = o, Corollary 3.2 is applicable, and the form for A+

* -i *A+ follows directly from (12)with bk = {i + dkdk) _ k-l

For the special case in which C = V, VC+V = W+V = V, and

Corollary 3.3 reduces to

Corol I arv o.4

A+

U ÷

V+

(16)

if and only if C --V.

Proof: If C = V, then UU+V = O and

U+VC + = U+LFU+VC+ = e

in the form for A+, {13), which gives {16).
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Conversely, if (16) holds, then it follows from the relation

AA+A= A that

UU+V + W+V = V.

Hence UU+V = 0 and C = V.

Let us now consider general forms for A+ in which it is not

required that C+C and V*U+*U+V commute. Let C designate the

expression

= (i w +)u

obtained by interchanging the roles of U and V in C = (I

Also, let K and K designate the dual expressions defined by

K = [I + (I = C+C)V*U+*U+V(I - C+C)] -I

UU+)V.

(17)

: [I + (I -C+C)U*V+*V+U(I . _+_)]-1 (18)

(Note that both

exist for every

K and K,

U and V.)

inverses of positive definite matrices,

Then we have

Theorem 3.3. The generalized inverse of any matrix,

be written in the following equivalent forms.

U - U+VC+ - U+V(I - C+C)ICV*U+*U + (I
(a) A+ =

C+ + (I C+C)KV*U+*U +(I - VC +)

(b) A+

U U+VC+ _ U+V(I - C+C)ICC*U+*U+(I
V+ = V+UC+ V+U(I C+C)KU*V+*V + (I

A = [U,V]

VC+) ]

+)

Can



Cc) A+
_" + c_- _+_)_"v÷"v÷(_- u_÷)]JC+ + (I - C+C)KV*U+*U+(I - VC +)
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Proof: Let X0 designate the matrix

X0 =

U+ _ U+VC + U+V(I -

C+ + (I - C+C) L

C+C) L1

(19)

* _#t ÷

obtained from X1 in (5) by replacing the quantity KIV U U by an

arbitrary matrix L, of the same size. i--nenit follows i..-_nediately,

using block multiplication, the definition of C, and the relation

C(l - C+C) = 8, that AX 0 --UU+ + CC+ = AX I, and so we have

(AX0) = AX0 and AXoA = A from the proof of Theorem 3.i.

Now forming XoAX 0 - X0(AX0) , it is clear that XoAX 0 = X0

provided L satisfies

L(LFU+ + CC+) -- L . (z0)

Similarly, forming XoA gives

"U+U - U+V(I - C+C)LU U+V(I - C+C)(I - LV)

(I C+C) LU C+C + (I - C+C)LV

upon simplification of the submatrices, and it follows that

provided L satisfies

(XoA)



[U+V(I C+C)(I - LV)]* = (I - C+C)LU (21)

and also that both U+V(I - C+C)LU and (I - C+C)LV are hermitian.

We will now show that the expression

L = KV*U+*U + (I - VC+) , {22)

with K as defined in (17), satisfies these conditions.

Since U+(I VC+)UU + = U+ and U+(I VC+)CC + = -U+VC + ,

then L in (22) satisfies (20). Next observe that since I - C+C is

idempotent, it commutes wi+_h _he _mtrix i + (I - C+C)V*U+*U+V(I C+C),

and thus with K. Whereupon, with both I

[(I - C+C)K] *

and so

= (I - C+C)K,

C+C and K hermitian,

U+V(I - C+C)LU = U+V(I - C+C)KV*U +*

is hermitian. Moreover, we have

or

(I C+C)LV = (I - C+C)K (I C+C)V*U+*U+V (I - C+C) ,

(I --C+C)LV = (I - C+C)(I - K) ,

which implies that (I C+C)LV is hermitian. Finally, since

U+V(I - C+C) (I_- LV) = U+V (I - C+C)K = [(I C+C)KV*U+*] *

and

(I - C+C)LU = (I - C+C)KV*U +* ,

then (21) holds for this choice of L.

79
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Thus it has been shown that X0 and A satisfy the relations

AXOA = A, XoAX0 = X0 , (AX0) = ?0(0, and (XoA) = X0A , provided L

has the form given in (22), and so X0 = A+ . The form for A+ in (a)

is obtained by replacing L in (19) by the expression in (22).

The forms for A+ in (b) and (c) are now easily established.

Let A designate the matrix A = [V, U]. Then it follows from (a) that

A+ can be written as

V - V÷UC÷ - V÷U(I - C÷C)KU*V÷*V ÷ (I - UC+)]c + (_- c÷c)_*v÷*v÷ (_ uc÷)

where C and K are the dual expressions obtained from C and K by

interchanging the roles of U iand V. Since A and A differ only by

the order in which colu_Is are written, there is a unitary permutation

matrix P, say, such that A = AP. Then we have A+ --P A , by (P29).

~ ,

Now P as a right multiplier permutes colunms of A, and P as a

left multiplier permutes rows of A+ in the same order, and it follows

from (23) that A+ can be written in the form

(23)

_÷÷ (_ - _÷_)_u*v÷*v÷ (_ - u_+)

v÷ _ v÷u_÷ : v+u(__ _÷_)_u*v÷_v÷ (_ - u_÷)

(24)

But A+ is unique. The forms for A+ in (b) and (c) are obtained now

by equating the corresponding expressions for submatrices in (a) and (24).
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It also follows from the symmetry exhibited by the expressions

for A+ in Theorem 3.3 (a) and (24) that Theorem 3.2 and each of its

corollaries has a corresponding dual form in which the roles of U and

V are interchanged.

Consider an arbitrary matrix A = [U, V], and assume A+ is

known. Partition A+ as A+ _-(G) where G and H have the size of

U and V , respectively. Then Theorem 3.4 provides an expression for

U+ in terms of G, H, and related matrices.

Theorem 3.4.

U+ -- G[I + V (I HV)+H]

•{I - [H - (I HV)(I HV)÷H] ÷ [H - (I - HV)(I - HV)+H]}.

and

Proof: We know from the expression in Theorem 3.3 (a) that

G = U+ - U+VC + - U+V(I - C+C)KV*U+*U +(I - VC +)

H = C+ + (I - C+C)KV*U+*U+(I - VC +)

in the partition of A+ corresponding to the partition A = [U, V].

Then it follows using the relations employed in the proof of Theorem 3.2 (a)

that

GV = U+V(I - C+C)K (25)

and

Further, I C+C

Therefore, since

I HV = .(I C+C) K. (26)

is idempotent and hermitian, and conmutes with

K is nonsingular, we have

K,
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(I - I-IV)+ = K-I (I - C+C) ,

by (P30), which combined with (25) and (26) to give

GV (I - }iV)+ : U+V (I - C+C)

and

(I - HV)(I - }iV)+ = I C+C.

(27)

(28)

Now since C+CC+ = C+ ,

and so

GV(I - HV)+H : U+V(I C+C)KV*U+*U+(I _ VC +) ,

Moreover

and thus

G[I + V(I - HV)+H] = U+ - U+VC + .

(I - HV)(I HV)+H = (I - C+C)KV*U+*U+(I - VC+) ,

H - (I - I-IV)(I - HV)+H = C+ .

(29)

(3O)

Finally, since U+C = e, we have

U+ = G[I + V(I - HV)+H](I CC+)

from (29), which combines with (30) and the relation C++ = C to

give the stated form for U+.

The following corollaries provide special forms for U+ correspond-

ing to the fonas for A+ in corollaries to Theorem 3.i. This corres-

pondence is apparent by observing that the relations satisfied by V

and C are simply the alternative statements of the conditions on

C+C and V*U+*U+V which werenoted above.
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Corollary 3.5. U+ = G[I + V(I - HV)+H] if and only if VC+V = C.

Proof: It follows from (29) that U+ = G[I + V(I - HV)+H] if and

only if U+VC + = 8. But this implies VC+V = C, and conversely.

Co____11arY 3.____6. U+ = G(I - H+H) if and only if VC+V = V.

Proof: From Corollary 5.3 we have G = U+ - U+VC+ and H = C+

if VC+V = V. Hence G[I + V(I - HV)+H] = G in (29) and H - (I HV)

(I - HV)+H = H in (50),and the general form for U+ in Theorem 3.4

reduces inmediately to the above expression.

Conversely, since we can _Tite the general form for fi as

G = U+(I VH), then

U+ : U+(I - VIi)(I - H+H) : U+(I - H+H)

if U+ = G(I - H+H). This gives U+H+H : e and so

UU+H * = UU+H*H+*H * = UU+H+HH * = O,

Then, IfulJ+ = 0, since UU+ is hermitian, and 0 = I_lJ+ =

C+UU + + (I - C+C)KV*U+*U + (I - VC+)UU + = (I - C+C)KV*U+*U + ,

which implies G : U+ - U+VC + and H : C+ . Whence C+CV*U+*U+V :

V*U+*U+V, by Corollary 3.3, and thus VC+V = V.

Corollary3.7. U+ = G if and only if C = V.

Proof: That C = V implies U+ = G follows directly from

Corollary 3.4. Conversely, if U+ = G, we have

U+VC + + U+V(I - C+C)KV*U+*U + (I - VC+) = 0, (31)
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by definition of G.

U+VC + = e, and thus

Multiplying (30) on the right by VC + then gives

U+VK1V*U+*U + = e,

where KI = (I + V*U+*U+V) -I. Therefore U V(I - KI) = O and

U+W*U+*U+V = o, from which it follows that U+V -- e and C --V.

Observe in Corollary 3.5 that VC+V = C if C -- e. In this case

* +* +

H = KIV U U , and I - HV = K1 is nonsingular, by definition of KI.

Conversely, if I - IN is nonsingular, then C+C = o, by (28) which

i..-_lies C = o. T_hus is follows that i - h"v" nonsinguiar is a necessary

and sufficient condition that A+ has the form given in Corollary 5.2.

Since we can have VC+V = C but C # o, I HV nonsingular is only

a sufficient condition that U+ has the form given in Corollary 3.5.

In Corollaries 3.6 and 3.7, however, the necessary and sufficient

conditions that U+ has the simplified forms can be restated in terms of

V and H. This gives Corollaries 3.6 (a) and 3.7 (a).

Corollary 3.6(a). U+ = G(I - H+H) if and only if }IV is idempotent.

Proof: From Corollary 3.6 it follows that we only need to show that

HV idempotent implies VC+V = V, and conversely.

+

If VC+V-- V, then H = C , by Corollary 3.3 and

(HV)2 = C÷VC+V _- C+V = HV.

Conversely, HV idempotent implies that I - HV is idempotent.

Therefore, since we also have I - }iV = (I - C+C)K hermitian, from the

proof of Theorem 3.3(a), (I - HV)+ = I - HV . Now (I - HV) + --K-I(I C+C),
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mdt_s

K-I(I - C+C) = (I - HI0(I - HI0 + = I - C+C,

by (28). This gives

(I - C+C)V*U+*U+V(I - C+C) -- O,

by definition o£ K. Then (I - C+C)V*U +* = e, and it follows from

the proof of Corollary 3.3 and the remarks i,mediately thereafter that

VC+V = V.

Corollary &.7(a). U+ = G i£ and only if HV is idempotent and

VH is hermitian.

Proof: The result follows from Corollary 3.7 by showing that HV

iden_potent and VH hermitian imply C = V, and conversely.

If C = V, then H = V+, by Corollary 5.4, and we have HV = V+V

idempotent and VH = W + hemitian from Theorem 2.1.

Conversely, suppose that HV is idempotent and VH is hermitian.

Now we know from the proof of Corollary 3.6(a) that HV idempotent

implies VC+V = V. Hence H = C+, by Corollary 3.3, and so VHV = V,

and

Then with (VII)

HVH = C+VC+ = C+CC + = C+ = H,

(Hv) = (c+c) = c+c = Hr.

= VH, by hypothesis, H and V satisfy the defining

+ C +equations for the pseudoinverse. Therefore, H = V , but H = .

Hence C = V, by (Pl).
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Gk_1
For the special case A = [Ak-i' ak] with A+ -- hk in which

Gk_1 has k - 1 rows and hk is a single row, Corollaries 3.5 and

3.6(a) combine to give a form for _-i corresponding to the represen-

tation for A+ in (I) and (2), Since hka k is a scalar,we have

Gk_l[I + (i- hkak)-lakhk ] ,

%_ cI-h hk ,

if hka k # 1

if hk_k--i

A form for V÷ corresponding to each representation for U÷

follows at once from the.....&lal s_tl D, ..v_*=A.__v"_....._. _,T"eaoh case we

simply inter-change U and V, G and H, and replace C by C.

3.3 Representations fo____rth___ePseudo Inverse of Sums of the Form UU + W

The purpose of this section is to present representations for the

pseudo inverse of certain sums of matrices. Consider matrices of the

form UU ÷ W . Observe first that this sum is defined if and only if

U and V have the same number of rows. The assumption that U and V

have the same number of rows. The assumption that U and V have the

same number of rows, is implicit throughout the following considerations.

Let A be any matrix with n columns partitioned as A = (U, %0,

where U and V are submatrices with k and n - k columns respectively,

0<k<n.

It is computational to confirm that A÷ can be written in the form

. :[._.v._.v vc. 1
C++ (I - C+C) KV"U+*U + (I VC+)

(1)
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whe re

and

K

A representation for

C : (I UU÷) V

[I + (I C+C) V*U+*U+V (I C+C)] "I

(UU + W ) is now obtained.

(2)

(3)

Theorem 3.5.

* ,

the sum UU + VV

For any matrices, U and V, the pseudoinverse of

can be written in the form

(uu
+* * +*

+ W*) +. : (I, - C V. )IT_ [TL_- wl+Vv (I - P+"_,_,_j KV*U+*]U T

(I - VC+) + C+*C +

where C and K are as defined in (2) and (3).

Proof: Let U and V be any matrices, and let A = (U, V).

Then UU + W = AA , and it follows from (PII) that (UU* * ++W)

A+*A +. The above representation for (UU* * ++ VV ) is obtained by

using A+ from (I) and block multiplication to form the product

A+*A +. For this purpose let

and

M

N

I - U+V (I - C+C) KV* U+*

* U+*U +(I - C+C) KV (I - VC +) ,

(4)

so that (1) can be written as

A +

MU (I - VC+)l
C+ + N

(s)
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Now by the defining equations in theorem 2.1, I - C+C is hermitian

and (I C+C) C+ -- 0. Consequently, we have N*C + = 0 and so

(C+ + N)* (C+ + N) = C+*C + + N N . (6)

Next observe that since

matrix K,

,
MM =

I - C+C is idempotent and conmutes with the

I - 2U+V {I - C+C) KV*U+* + U+V (I - C+C)K (I - C+C) V*

U+* U+V (I c+o KV*U+*

or

MM = I - U+V (I - C+C) KV*U +* - U+V (I - C+C) K2V*U +*, (7)

where

(I C+C) V*U+*U+V (I - C+C) K = I - K

by the definition of K. Finally, observing that multiplication of

the last term in (7) on the left by (I - C+*V*)U +* and on the right

by U+ (I - VC +) gives - N N, then (S), (6), and (7) combine to give

A+*A + = (I C+*V *) U+*IvIJ+ (I VC +) + C+*C + .

Replacing M by the expression in (4) yields the representation for

* , +

(uu +w) .

We now state and prove five special cases where the general form

for A+ given in theorem 3.5 simplifies.

Let

K1 = (I + V*U+*U+V)-I
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Then we have

Corollar_ 5.8.

i_ and only if

* , +
(UU + W ) = (I - C+*V *) U+*U + (I - VC +)

- U+*U+V (I = C+C) KIV*U+*U + + C+*C +

C+C and" V*U+_'U+V commute.

(8)

Proof: If C+C and V*U+*U+V c(mmte, then

(I - C+C)K : K1 (I - C+C) : (I - C+C) K1 ( I - C+C). (9)

Therefore

U+V (I - C+C) KV*U+*U+VC+

*+*%+

= U+V (I - C+C) KIV U UV (I C+C) C+ = 0

and dually

C+*V*U+*U+V (I- C+C) KV*U+* = 0

in the representation for (UU* W*) ++ , Theorem 3.S, which reduces to

(8).

Conversely, suppose that (UU + W ) has the form given in (8).

Them combining the relations C+U = 0, C+V = C+C, the definition of K1

and the defining equations of Theorem 2.1 now gives

(UU + W*) + (UU * UU + _+ W) = (I - C+*V *) + (I C+*V *) U+*U+V

(I - C+C)V * U+*U+V (I - C+C) KIV*UU +

- U+*U+V (I C+C) (I - K1)V* + C+*V *

which reduces to
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u÷(uu . w*)* cuu , w ) -uu + . cc÷ - c**v*u÷*u÷v(I - c÷c)(v* , u**_v

(I - C+C) K1C

upon simplification, using the fact that V*UU+ = V - C . Continuing in

the same manner yields

* * * VV _ *(UU + W)(LFU + )+ (UU + w) : uu +vv'uu+ +_cc +

- W*E+*V*U+*U+V (I C+C)V * + UU+V (I C+C) KIC* + W*U+*U+V

(I - C+C) KlC

or

, , , ,)÷ , , , , vc÷cv,u÷,u÷v(UU +W) (tiLl +W (UU +W) =UU +W -

(I - C+C)V * + V (I - C+C) KIC* + W*U+*U+V (I - C+C) KIC*

where again the definition of C is employed and we have used the

relation

W*CC + CC+W * * * , , * W*LEI += ( ) = (CV) =VC = W - .

But

* * * * + * * * *

(UU +W) (UU +W) (UU +W) =UU +W

Therefore

- VC+CV*U+*U+V (I - C+C)V * + V (I - C+C) KlC*

KIC = 0 .

+w*g÷*g+v( - c+o

(I0)
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Multiplying (I0) on the left by C+ and on the right by U+*U+VC+C

now gives

C+CV*U**U+V (I-C*C) V*U+*U+VC+C = 0 (ii)

Taking B = C+CV*U+*U+V (I - C+C) with C+C hermitian and idempotent,

(ii) becomes BB = 0. Hence B = 0 and thus

C+CV*U+*U+V = C+CV*U+*U+VC+C. (12)

Consequently, with both C+C and V*U+*U+V hermitian, the right hand

side of (12) is hermitian and

¢+_*u÷*u÷v (c+_*u÷*u÷v)*= = V*U+*U+VC+ C

as asserted.

Corollary 3.9. (uu* +w*)+ = u+*u+ - u+*u+ - U+*U+VKlV*U+*U++

C+*C + (13)

if and only if VC+V = C.

Proof: If VC+V = C, then VC+ = VC+CC + = VC+VC + = CC+ and

U+VC + = U+CC + = 0. Thus C+C and V*U+*U÷V commute, and (13) follows

directly from (8).

Conversely, if (15) holds, then we can proceed as in the proof of

Corollary 3.8 to form

* W*) +(UU* * *U+VKI C*(uu + +w) = uu++u+

and

* * * W* )+ * * * W* *
(UU + W)CLFU + (UU + W ) : UU + UU+ + UU+VK1 C +

* +* + * *

VV U UVKID + VC+W .
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CUU , , VV*I+ * •+VVlCtlU + {LnJ +_1

= _ + _+V CI C+ClV* + v CI - C+ClV*_ +

+ V (I C+CIV*U+*U+V (I - C+C)V * + VC÷CV * ,

from which it follows that

or

VV = 2V (I - C+C)V *

+ V (I C+C)V*U+*U+V (I C+OV * + VC+CV* ,

÷ *
0 = V (I - C+C) V* + V (I - C+C)V*U+*U+V (I C C)V .

Since I - C+C is idempotent and VV*V+* = V implies CV*V+*

multiplication of (161 on the right by V+*K gives

0 = V (I = C+C) [I + (I - C+C)V*U+*U+V (I - C+C)]K = V - VC+V

(161

= C,

and so VC+V - V.

Corollar Z 3. ii

(UU*+ W*) + = U+*U+ + V+*V+ (17)

if and only if C = V .

Proof: If C V, VC+V W+V V and (UU* * += = = + VV ) can be

written in the form given in Corollary 3.i0. Also, C --V implies

UU+V = 0. Hence U+V- 0 and (15) reduces to (171.

Conversely, if (17) holds, then multiplying the relationship

• , U+* V+*v +(UU +WI( U+ + )CUt)* * * *+W) = IJU +VV



on the left by CC+ and on the right by C+*C *, gives

Therefore U+VC* = 0 and

C = CC+C = (I - UU+)VC+C = VC+C - UU+VC*C +* = VC+C = VC+V .

Applying Corollary 3.9 and the fact that the generalized inverse is

unique, we have

_ * +, + C+*C +V+*V + = U+*U+V KIV U U +

by equating the right hand sides of (13) and (17). Multiplication on

the left by W now gives

W + = - V (I K1)V*U+*U + + VC + ,

which provides the essential relation required to complete the proof.

Multiplying (18) on the right by V 8rid ,using

• ÷* +

V = C - V (I - K1)V U U V ,

or

UU+V - V (I

by the definition of C and

U+V{KI + V*U+*U+V) = 0

by multiplying (19) on the left by U+ .

KI) + W*U+*U+V = 0 ,

KI. Then we have

and V*U+*U+V positive semidefinite imply that

exists, it follows from (20) that U+V = O.

*u+'u+vc*CC --0.

VC+V = C yields

(18)

(20)
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Since KI positive definite

(K1 + V*U+*U+10-I

Therefore C = V.

(19)
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Corollary 3.12

, , + * U+* VKIV*(uu +w) =u+ u+ - u+ u+*u+ . (21)

if and only if C = 0.

Proof: If C = 0, then C+ = 0, VC+V = C, and (21) follows

directly from the expression for (UU* * ++ W ) in Corollary 3.9.

Conversely, if (21) holds, we have

* * * * + * ÷* ÷

(uu +w)CUU +w) =uu + +CKIVU u .

Since both the left hand side of this expression and UU+ are hermit-

ian, then

,., + * U+*U+VKI c*CKIV*U+*U + = (CKIV U U ) --

Multiplying on the left by I - UU + and on the right by VC*C +* now

gives

C(I KI)C*C +*-- _ 0 j

and so

C - CKIC*C +* = 0 . (22)

Forming (UU + W )(UU + W*)+(UU * + W ) and setting the resulting

expression equal to UU ÷ W , it follows from

* , ÷

UU + UU+W * + CKIV UU + C (I - KI)V* --UU* + W*

that CKIC = 0, which combines with (22) to give C = 0 .
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Numerical examples of matrices U and V for which C÷C and

V*U+*U+V do not commute and examples for which the conditions in

Corollaries 3.8 to 3.12 hold are easily constructed. In fact, examples

can be constructed using only matrices with elements zero or unity.

5.4 Pseudo Inverses of Sums of the Form U + V

Suppose now that U and V are matrices of the same size. Then

we can consider representations for the generalized inverse of the sum

U + V. For the special case of *-orthogonal matrices (that is, where

U and V are matrices with both [IV = 0 and V U = 0, we have shown

in (P25) that (U + V) + = U+ + V+. In this section we develop repre-

sentations for the generalized inverse of the sum U + V, where U and

V are arbitrary, rectangular matrices satisfying only the single

condition UV = 0. Clearly, by applying the results to U and

V , representations for (U + V)+ when U V = 0 follow by syn_etry.

(P25) will again be established as a special case. (Corollary 5.16)

Consider any matrices U and V with UV = 0. Then

(u+v)(u÷v3 =uu ÷w ,

and it follows from (P10) that

V_ + * , , +(u+ = (u÷v) (uu +w)

* * * + * * * +

= u(uu ÷vv) ÷v (uu ÷vv) (1)

Now from Theorem 3.5 we have a general form for (UU* W*) +÷ which can

be substituted directly into (3.2). Alternatively, note that applying

(PI0) to the partitioned matrix A = [U, V] gives
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* * +
A+ = ACAA) C2)

Since A+ is unique, corresponding submatrices in (3.1) and (2) must be

* * * +

equal. Substitution of the expressions thus obtained for U (UU + W )

and V (UU ÷ W*) ÷ into (3.54) gives

Theorem 5.6. For any matrices U and V such that UV

(U ÷ V) + = U÷ - U÷VC + - U+V (I - C÷C) KV*U÷*U ÷ (I - VC +1 + C÷

+ (I - C+C) KV*U+*U + (I - VC+)

= O,

= U+ + (I - U+V) [C÷ + (I - C+C) KV*U÷*U ÷ (I - VC÷)].

The same five necessary and sufficient conditions employed in

corollaries 3.8 - 3.12 are also applicable to establish special cases

of the representation in Theorem 3.6. Since a proof of sufficiency in

each of the following corollaries is obtained by taking the corres-

ponding special representation for A+ = (U, ID+ developed in section

II and forming the sum indicated in (i), only the necessity of each

condition will be established. For this purpose we first note that with

UV = 0, we have not only the relations U÷C -- 0, C÷U = 0, and C÷V = C÷C,

which hold for every U and V, but now also

UC+ = UC*C+*c + = 0,

which implies

cu+ = o, cu = o (3)
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* *U+ * •and (I +VU + V) U = U, which implies

Corollary 3.13.

* * U+ = U+ (4)KIU = U , K1

If UV = O, then

(U + %0 + = U+ - U+VC + - U_V (I - C+C) KIV*U+*U +

+ C+ + (I C+C) KIV*U+*U + (5)

if and only if C+C and V*U+*U+V con_nute.

Proof: (Necessity.) Suppose that (U + V) + has the form given

in (S). Then it follows by equating this expression and the expression

in Theorem 3.6 that

(I - U+V) (I - C+C) KV*U+*U + (I - VC +)

= (I - U+V)(I - C+C) KIV*U+*U +.

Multiplication on the right by V(I - V*U +*) now gives

(I - U+V} (I - C+C) K (I - C+C) (I - V*U +*)

= (I -U+V) Cl C+C) KI (I V'U+*), (6)

where we have used the fact that I C+C commutes with K and the

definitions of K and K1. Since the left hand side of (6) is

hermitian, then

(I - U+V) (I - C+C) K1 (I - V*U +*)

= (I - U+V) KI(I - C+C)(l - V'U+*),
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and so

C+CKI (I -C+C) (I V*U+*) = O, (7)

where the second equation is obtained from the first by multiplication

on the left side by C+C and use of (3) and Theorem 2.i. Multiply-

ing (7) on the right by U yields

C+CKI U* - C+CKI (I - C+C)V*U+*U * = 0

or

C+CKI (I C+C)V *

by (3), (4) and the definition of C. Hence C+CKI (I - C+C) = 0,

and it follows from the relation

C+CKI = C+CKIC+C

that C+C and V*U+*U+V commute.

Co rollar Z 3.14. If UV = 0, then

(U + V)+ = U+ - U+VKIV*U+*U + + C+ + KIV*U +*U +

if and only if VC+V = C.

(8)

Proof: (Necessity.) If (8) holds, then it follows from the

relation (U + V) (U + V) + (U + V) = U + V that

U + CKIV U + UU+V + C (I - KI) + VC+V = U + V,

and so
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* +*

CKIVU + C (I - KI) + VC÷C = C.

Multiplication on the right by U+V now gives

C (I Kl) -- 0.

Hence, CV*U+*U+V = 0, which implies U+VC * = 0, and we conclude that

VC+V = C as in the proof of necessity in Corollary 3.ii.

Corollary 3.15. If UV = 0, then

= C+(u+ v_÷ u÷ - u÷vc÷ ÷ (9)

if and only if VC+V = V.

Proof: (Necessity.) If (U + V) + has the form given in (9),

then if follows by equating this expression mnd the expression in

Theorem 3.6 that

- u÷v (i c*o KV*U**U*(I vc÷)

+ (I -C+C)KV*U+*U + (I -VC +) = 0.

Multiplication on the right by VK -I (I - V*U +*) now gives

(I - U+lO (I - C+C)V*U+*U*V (I - C+C) (I V*U+*) = O,

which implies

(I - U+V) (I C+C)V*U +* = 0 .
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Using the relations UV = 0 and UC + = 0 it follows, therefore, that

UU+V (I - C+C)V*U+*U + = O.

IIence UU+V (I - C+C) = O, and so

V- VC+V = V (I - C+C)

= V (I - C+C) UU+V (I - C+C) = C (I - C+C) -- 0 .

*
Corollary 3.16. If [IV = O, then

(u + v)+ = u+ + v+

if and only if C = V.

* = 0Proof: (Necessity) Since UV = 0 implies that UV+

and VII+ = O, then (U + \0 (U+ + V+) (U + V) = U ÷ V gives

UU+V + VV+U = 0 .

Daltiplying by V+V on the right we have

uu+w+v = uu÷v = 0,

and so C : V.

Corollary 3.17. If UV = O, then

(U + V) + = U+ - U+VKI V*U+*U+ + K1V*U+*U+ (I0)

if and only if C = O.
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_roof: (Necessity) If (i0) holds, it follows from

(U + V) (U+ V) + (U + V) = U + V

that

or

÷_

U + UU+V + CK1V 1! + C (I - K1)

* ÷*

CK1V II + C (I- K1) = C .

[_ltiplying by U+V on the right we have

l)roof of Corollary 3.14. I Ience VC+V =

for (U + V) + in (8) and (i0) gives C+

= U+V,

(: (I K1) = 0 as in tile

C, and equating tile expressions

= 0 aid thus C = O.

Observe in Corollary 3.1t_ th;,t C = V implie_._ U V = O, m,.l

conversely, h_mn combined with the hypothesis of the corollary, we

then have that (U + l0 + U+ + V+ if UV = 0 and U V = 0, that is,

if II and V are *-orthogonal matrices. Also observe that when C = V

in the hermitian case, (i_rollary 3.11, UU m_d W are *-orthogonal

and (3.17) can be written in the alternative fom

_÷ _÷ _÷

Finally, it should be noted that although proofs of sufficiency in

Corollaries 3.8 to 3.12 can be constructed directly by taking the

corresponding special representation for A+ ; [U, V] + from section

II and forming A+*A +, reduction of the resulting expression to obtain

the given form for (UU_ * ++ }%r ) is required in Corollaries 3.8, 3.9,

and 3.12. llence, unlike the proofs in Corollaries 3.13 to 3.17
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sufficiency in these corollaries to Theorem 3.5 is more easily

established by direct reduction of the general form for (UU + W )

We now consider two applications of representations for (U + 10+ .

We first establish relationships between V+ and the pseudo inverse

of C = (I UU+)V, where U and V are arbitrary matrices, and show

as a special case that VC+V -- C is a necessary and sufficient

condition for V to have a particular decomposition into a sum of

*-orthogonal matrices. We then consider the partitioned matrix

A = (U, ID and employ Corollary 3.15 to obtain a simple derivation

of the form for A+ in (3.1).

As noted above, each representation for

,
has a corresponding dual form with U V = O. If F

matrices of the same size with F G = 0, and if C = (!

+

(U + V) with UV = 0

and G are any

+

F F)G rand

~+" + +* * -iK -- [I + I - c OGF F G (I - C+C)]

then it is easily shown that the dual form for the representation in

Theorem 3.6 is

(F + G) + = F+ - C+*GF + - (I - C+*G)F+F+*G*K (I C+C)GF +

+ C+* + (I - C+*G)F+F+*G*K (I - C+C). (Ii)

This form for (F + G)+ can be used to establish a general relation-

ship between V+ and C+.

Let U and V be any matrices with the same number of rows,

and consider the decomposition

V = (I - UU+)V + UU+V -- C + LFLI+V. (12)
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Since C U = O, then

this case

F = C and G : UU+V satisfy F G = 0. In

= (I - C+C)V*UU + = (I - C+C)V * ,

and, with I - C+C idempotent and hermitian, (I - C+C)C =

implies C+ = C+ (I - C+C), and so C+C = C+V*. Substitution in

(Ii) now gives

Theorem 3.7.

v+ C+ _ C+*UU+VC +

= (I - C+*I/U+V)C+C+*V*UU+K (I - C+V*)UU+VC +

+ C+'+ (I - C+*UU+V)C+C+'V*UU+K (I C+V*).

For this representation we have

K = [I + (I - C+V*)LFU+VC+C+*V*LFU+ (I - C+V*)] -1

Now K can be replaced by

K1 = [I + UU+VC+C+*V*UU+]-I

if and only if C+V* and UU+VC+C+*V*UU + confute, and special forms for

V+ are easily obtained which correspond to Corollaries to Theorems 3.5

and 3.6. Analogous to Corollaries 3.14 to 3.17 necessary and sufficient

conditions for V+ to simplify can be stated in terms of UU+V, C,

and C+. Alternatively, we can proceed as follows to obtain special cases

in terms of V, C, and C+.
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If C = V, then UU*V = 0, C = (I - V+V) V*UU+ -- 0, and

the representation for V+ reduces to C÷. On the other hand, if

C = 0, then C = V* = V*UU+ and the representation for V+ reduces

to C÷* = (UU+V) ÷. In each of these cases the converse follows

immediately.

For the cases VC+V = C and VC+ = V we can proceed directly.

In the first case, however, it is interesting to ob._erve that VC÷V = C

is a necessary and sufficient condition that (12) is a decomposition

into *-orthogonal matrices. We have

Lemma 3.1.

VC+V : C.

C and UU+V are *-orthogonal if and only if

Proof: Since C U = 0, we only need to show that UU+VC * = 0

implies VC+V --C, and conversely. But his is obvious by noting that

UU+VC * = UU÷VC÷CC * and that

C = CC+C = VC+C - UU+VC+C = VC+V - UU+VC*C +* .

Combining the dual form of Corollary 3.16 and [emma 3.1 now gives

Corollary 3.18.

V + C += + (uu+v)÷

if and only if C and UU+V are *-orthogonal.

Suppose that we are given matrices U and V such that (3.65)

is a decomposition of V into *-orthogonal matrices. Then we know

from LenTna 3.1 that VC÷V = C, and it follows by multiplying the ex-

pression for V+ in Corollary 3.18 on the left and right by V that



uu+v = v(uu+v)+v. (13)

Now since both V+V and VV + are hemitian, UU+W+V = UU+V implies

V+V(UU+V) + = (UU+V)+ and, with VV+C = VV+VC+V = VC+V = C,

W+UU+V--UU+V implies (UU+V))W + - (UU+V)+. Therefore,

multiplying (13) on the left and right by V+ gives V+UU+VV + =

V*V(UU+V)+VV + = (UU+V)+ . Conversely, if the representation in

Corollary 3.18 holds with (UU+V)+ -- V+UU+VV+, then C+VV + -- C+.

Thus VV+C = C and VC+V = W + (I- UU+)V = W+C = C. This

establishes
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Corollary 3.18(a).

C+ = V+ V+UU+VV+

if and only if C and [_I+V are *-orthogona!.

For the case VC+V = V we have

Corollary 3.19.

¢ = c+ ÷ 1 (14)

if and only if VC+V = V.

Proof: Since V+V is hermitian and CV+V = C, then

V+VC + = C+. Thus if VC+V = V, then V+V = V+VC+V = C+V = C+C,

C = (I - C+C)V * " "= 0, K reduces to K1, and (14) follows directly

from the representation in Theorem 3.7.

Conversely, if (14) holds, we have by multiplication on the left

by UU+V that
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UU+W + : UU+VC+ - (I - KI)UU÷VC + + (I - KI ),

by definition of KI or

uu+w+ = _lUU+Vc+ + 1 K1 .

Multiplying on the right by V and rearranging terms now gives

_iv _l_+VC+V: c.

Since UU+ is idempotent and commates with KI' and U+C = 0,

follows that

it

KlUU+V(I - C+V_: 0.

Thus (V- C)(I - C+V) = 0 and so V = VC+V.

Although we have employed the form, for A+ in {3.1) to build up

the pseudo inverse representations for various sums of matrices, it is

clear that each representation could have been established by direct

verification of the defining equations in Theorem 2.1. In particular,

+
having established the form for (U + I/) in Corollary 3,15, we can

close the loop by giving a simple derivation of A+

Observe first that any matrices, U and V,

of rows satisfy the relation

V= UU+V (I - C+C) + VC+C.

Now setting U : [U, UU+V (I

any matrix A = [U, V] that

in (3, i),

with the same number

C+C)] and V-- [0, VC+C] it follows for

A : U+V,
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where UV = UU+V (I - C+C)C+CV * = 0. Rewriting U as

U__ : U[I, U+V (I - C+C)] ,

where the second factor in the product has full row rank, it can be

shown that

U+ : [I, U+V (I - C+c)]+u + .

Application of the fact that A÷ = (A*A)+A * to the first factor

of this product now gives

U ÷ =

(I - C+C)V*U+*K

]U+ (15)

with

= [I + U+V (I - C÷C)V*U +*]-1 .

Then UU+ : UU + ,

C : (I- UU+)V : [0, (I- uu÷)vc+c] c+ o-- [0,c], _ -- + ,

and so

VC+V = VC+[O,VC+C] : [0, VC+C] = V .

From Corollary 3.15 we have, therefore, that

A+ = (U + V) + : U - U÷VC+ + C+ . (16)
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Finally, observing that K can be rewritten as

: I - U+V (I - C+C)KV*U +*,

where

K =_ [I + (I - C+C)V*U+*U+V (I - C+C)] -1

and

(I - c+OV*U+*K

U+ in (15) becomes

: (I - C+C)KV*U +* ,

U +

U+ - U+V (I - C+C)KV*U+*U+]

I
L (I - C+C)KV*U+*U + ]

which combines with C+ and VC+ =

for A+ in (3.1) directly from (16).

VC+ to give the representation

We now give some concluding remarks on computational forms.

If V is a single column, and either C = 0 or C # 0 and

C+C = (C*c)-lc*c = 1. If we denote this special case by writing

V = Z, E = (I - UU+)! and El = (i + _v*U+*U+v)-l_ , Corollaries

3.10 and 3.12 combine to give

(Uu +
I +, +

(I - c+*v*)U+*U + (I - vc___+) + c_ c , if c_# 0

= (17)

u+*u+ klU+*U%v'u+'u+-_ _ if £=0.
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By the remarks after Corollary 3.17, concerning reduction of the general

* * +

representation for (UU + W ) , it follows that forming the

expression in (17) when c # 0 is equivalent to applying formula

(2.1), (2.2) to obtain A+ = [U,v_] + and forming A+*A +. When c = 0,

however, application of the expression in (17) does not require direct

formation of the submatrix k_lU+____*U+*U+ employed in the formula for

A+ = [U, v_]+, but only the formation of k_l(V U U ) (v2U+*U +) .
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4.1 Introduction

The definitions given in Chapter 2 fail to inherit an important

spectral property of the inverse of a non-singular matrix. The

property to which we refer is:

If a matrix A is nonsingul%r and if u is an eigenvalue of A

corresponding to the eigenvector x, then -I is an eigenvalue of A-I

corresponding to x. Drazin [37] defined a generalized inverse of a

matrix which preserves this spectral property of the inverse for the

generalized inverse as far as it is possible to preserve it for a

singular matrix. That is, if _ is a non-zero eigenvalue of the

-i
matrix A corresponding to the eigenvector x, then _ is an

eigenvalue of the pseudo inverse of A corresponding to the eigen-

vector x. Drazin defined the pseudo inverse AD (D for Drazin)

as follows: If J is the Jordan canonical form of a square matrix

A, we have, of course A = pjp-l. Now the Jordan matrix J can be

regarded as the direct sum of a number of matrices Ji corresponding

to tile distinct eigenvalues xi of A. Ji is nonsingular if

xi _ 0 and nilpotent if xi 0. Let jD be tile direct sum of jD-- i _

where jD i = j-i if Xi # 0 and jD.I is a null matrix if X.I= 0.

Finally, let AD = pjDp-l. Then it was shown that AD was the

unique matrix satisfying the three conditions:

iii
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AAD

A(AD) 2

-- AK for some positive integer K.

= ADA

:A N

Drazin shows that AD is unique. However, it is not true in general

that (AD)D = A, and it may occur that AID = A2D when A1 _ A2.

Also, AADA = A only when A has generalized null vectors of

height at most one, i. e. each Ji corresponding to _ = 0 is

a null matrix in the above definition.

Recently, Odell and Scroggs [68] defined a pseudo inverse on

which attention is focused in this chapter.

Throughout the discussion that follows it will be assumed

that A is an n by n co_lex matrix ....... +'_-• e_e .... t_z_,, of an operator

on the n-dimensional Hilbert space X. The definition adopted here

of a finite dimensional Hilbert space is that it is a finite

dimensional, complete, complex inner product space.

A vector x is said to be a generalized eigenvector of A of

height k, k > 0, corresponding to the eigenvalue u if and only

if (A - ul)k-lx _ 0 and (A - ul)kx = 0. A vector x is said to

be a generalized eigenvector of maximal height corresponding to

u if and only if there exists a positive integer k such that x

is a generalized eigenvector of height k of A corresponding to

u and x _ R (A -ul), the range of A - ul. If x is a generalized

eigenvector of A corresponding to zero, we will say that x is a

generalized null vector of A. If x is a generalized eigenvector

112
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of height k for A, then the sequence of vectors (A - uI)Jx,

j -- 0, 1, 2, ..., k-l, is said to be a chain of generalized eigen-

vectors of length k. In the definition given below for a pseudo

inverse) use is made of the Jordan form of a matrix. Let C be the

Jordan form of the matrix A, then there exists a matrix P such

that PAP -I = C. However, there are, in general, many choices for P.

In order to insure uniqueness of the pseudo inverse, we shall place

certain restrictions on P. The columns of p=l are a basis for X.

These columns are maximal chains of generalized eigenvectors of A.

We restrict the possible choices for P by putting orthogonality

restrictions on the columns of p-l. The following restriction will

be referred to as condition (0) for P with respect to A or

simply as condition (0) when it is clear from the context what is meant.

Condition (0): Any generalized null vectors of maximal height,

say k, of A which appear as columns of p-I are mutually ortho-

gonal and orthogonal to all generalized null vectors of A which

are of height less than k.

It should be noted that if PAP -I --C where C is a Jordan

form of A, then the fact that P satisfies condition (0) with

respect to A implies the above orthogonality restrictions on the

columns of p-l.

We shall use the symbols

null space of A, respectively.

R(A) and N(A) for the range and

Also, if U is a subspace of X

its orthogonal complement will be designated by U .
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4.2 Definition, Properties and an Application

We now define the Scroggs-Odell pseudoinverse.

Definition 4.1: Let

canonical form C. Then there exists a non-singular matrix

Satisfying condition (0) such that PAP -I = C. Define CI

be the matrix such that

A be an n by n matrix with Jordan

P

to

clc = PR(C I) , (1)

CCI : PR(C) '

where PM is the orthogonal projection on M.

inverse of A, A+, is defined by

Then the pseudo

(2)

A+ = p-IcIp. (3)

It follows easily from the definition that if A is non-

singular then A+ = A -I .

Theorem 4.1: Let A be an n by n complex matrix represen-

tation of an operator. Then there always exist a matrix P satisfy-

ing condition (0) such that PAP -I = C, where C is a Jordan form of A.

Proof: Consider the ranks of the iterates of A, r(A),

r(A2), ..., r(Ak). Let k be the smallest integer such that

(Ak) (Ak+lr = r ). Find a basis for N(A). Compute a basis for

(AP) (AP-I P = 2 3, k-i From considerations of rank,N -N ), , • • ., •
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we see that it is possible to find an orthonormal basis for

N(A k) - N(A k-l) which is orthogonal to N(A k-l) and, consequently,

orthogonal to N(AP), P = I, 2, . o o, k-2. These basis vectors

are generalized null vectors of maximal height k of A which

are mutually orthogonal and orthogonal to all generalized null

vectors of A of less height. If for any interger m < k, we

have r(Am-l) r(A m) > r(ATM) - r(Am+l), then there are generalized

null vectors of maximal height m. Now if x is a generalized null

vector of maximal height greater than m, then some iterate of A

operating on x belongs to N(Am). If Xl, x2, . .., Xq are those

vectors in N(A TM) which are images of vectors of maximal height

greater than m, we complete this set to a basis by using mutually

orthogonal vectors which are orthogonal to Xl, x2, . .., Xq and

to N(Am-I). Again an appeal to the rank of Am shows that this

is possible. We now have a basis for the generalized null space

of A consisting of maximal chains of generalized null vectors of A.

Since X is the direct sum of N(A k) and the generalized range of A,

we can construct a canonical basis for the generalized range of A

in the usual manner so that the representation of A in the above

basis for X is a Jordan form for A.

We now state and prove three theorems which are interest-

ing in their own right, but also needed later to establish that the

above definition gives a unique pseudo inverse for the matrix A.

Theorem 4.2 :

then

If C is the Jordan canonical form of A,
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CCIc = C (4)

CIcc I = CI

(tic) * =

(ccI) * :

CIc

CC I .

(s)

(6)

(7)

Proo____ff:Equations (i) and (2) define a pseudo inverse for C.

This definition is the same as the definition of E. H. Moore [66].

Equations (4), (5), (6) and (7) are used by Penrose [70] to define

a pseudo inverse. _lese have been shown to be equivalent in [6].

Theorem 4.3: If A is the n by n matrix representation

of an operator on the n-dimensional Ililbert space X, then

X : R(C I) 0 N(C) and R(C) ON(CI).

Proof:

Whalen [36].

This follows directly from the work of Desoer and

Theorem 4.4: CIc and CC I are diagonal matrices with

n basis
diagonal elements either 1 or O. Considering the {ei}i= 1

for X, if Ceih O, then the ih-th diagonal element of CIc is 0

if Ceik # O, then the ik-th diagonal element of CIc is i.

Similarly, if CIe i = O, then the ih-th diagonal element of CIC

ih

is zero, and if C eik # O, then the ik-th diagonal element of

CC I is i.
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Proof: Since R(C I) 8 N(C) : X, we can divide the basis

! ! ! !

into two disjoint sets E : {eik}P I and E :{ eih} hrl with E
! !

spanning ,R(C I) and E spanning N(C). Now if e. c N(C), then
zh

ih-thCICeih 0. Therefore every element in the colunn of CIc

must be zero. Ilowever, if ezk.¢ R(C I), i.e., Ceik _ 0, then by

(i) CICeik = eik. Hence, every element in the ik-th colunm of

CIc is zero except for the diagonal element and the ik-th

diagonal element must be io Hence CIc has the form described in

the theorem. The verification of the form of CC I is easily

confirmed in a like manner.

Len_na 4.1: C+ is the tmique pseudo inverse of C.

Proof: Let CI be any Jordan form of C. We must show

that if C = PI-ICIPI where Pl satisfies condition (0) with respect

-IcIIP Ito C, then CI = Pl = C+' where CI and CII are defined

by (i) and (2). Clearly there exists a permutation matrix Q such

! -i ! -

that CI --Q CQo Therefore, C = Pl Q CQP1 = P ICp' where P = QPI"

As p-i represents a mere rearrangement of the cohmms of Pl -I ,

condition (0) for Pl with respect to C

P with respect to C.

Thus, it suffices to show that if

satisfies condition (0) with respect to C, then CI = p-IcIp.

In view of the preceding paragraph, we may assume that C

partitioned in the following manner

implies condition (0) for

C : p-Icp, where P

can be
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C _._

C2 0

0 C3

(8)

where C2 is non-singular and C5 consists of all of the Jordan

blocks of C corresponding to the eigenvalue zero° Partitioning

p-i we have
9

I21El2c°j[c20c°I[] (9)

for any positive integer k. For sufficiently large k,

C 2
-k

0

C3_
0 0

(i0)

The non-singularity of C2 and equation (9) imply that P2 : 0,

P3 : 0. Equation (9) for k : I is equivalent to PIC2 = C2P I and

P4C3 = C3P 4 . As a consequence of the non-singularity of P,

both Pl and P4 are non-singular. Also, Pl ¢onmmtes with

-I
C2 if and only if it conmmtes with C2 .

Thus, in order to show that CI = p-IcIp, it suffices to

! !

show that C3P 4 = P4C3 implies that P4C 3 = C 3P4 .
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Let the Jordan blocks of C3 be C31, C32, . .., C3p , i.e.,

C3 = diag (C31 , C32 , ° .., C3p ) where C3i is an n i by n i matrix

all of whose elements are either zero or one. If n i > I, then the only

non-zero elements are the elements of the diagonal above the

principal diagonal. Partition P4 in a manner conformal to the

partitioning of C3, ioeo, P4 = (Pij)' where Pij is an n i by nj

matrix. We assume that P4C3 = C3P 4. Let Q = P4C3 and R = C3P 4.

Then the above partitioning of P4 and C3 produces, in a natural

way, a partitioning of Q and R. If Q- (Qij) and R= (Rij),

then (Qij) = (PijC3j) and (Rij) = (C3iPij). Now, from the nature

of C3j, we see that the first column of Qij is zero. The k-th

colunm of Qij is the same as the (k-1)-th cohmm of Pij for

k = 2, 3, . .., nj. From the nature of C3i , it follows that the

last row of Rij is zero and for k = I, 2, o .., ni-i , the k-th

row of Rij is the same as the (k+l)-th row" of Pij" By assumption,

(Qij) = (Rij). Thus, (1) every element of the first column of Pij

is zero except, possibly, the (1,1) element, (2) every element of

the last row of Pij is zero except, possibly, the (ni, nj)

element, and (3) the elements of any given diagonal sloping downward

to the right are equal.

n . Suppose C2Now consider the canonical basis, {ei}i= 1

is a t by t matrix. The colunms of p-i after the t-th column

form chains of generalized null vectors of C corresponding to the

Jordan blocks of C3. The coltmm to the right in each chain is of

maximal height. We can establish a one-to-one correspondence

between the elementary vectors ei for i > t and the colunms of
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p-I after the t-th column by making the i-th column of p-I

correspond to ei. It is easily verified by actual multiplication

that if ei corresponds to a colunm of p-i which is the l-th

colunm of its chain, counting from the left, then

ized null vector of C of height i.

ei is a general-

Let p be the right-hand column of the chain corresponding

to the j-th Jordan block of C3. Then by condition (0) p is

orthogonal to all generalized null vectors of C of height less

than nj. These include all elementary vectors e i corresponding

to columns of p-1 whose ordinal position in their chain is less

than nj. It follows that the elements of p in the corresponding

row position are zero° In view of (3), we can conclude that

Pij = 0 if ni < nj and Pij is a diagonal matrix if ni Z nj.

It remains to be shown that the diagonal elements are zero if

n. >n..
i j

p has nonzero elements at most only in those row positions

corresponding to colurms of p-i which are generalized null vectors

of C of height nj. Let there be m columns of height nj

belonging to chains of length greater than n.. The submatrix
J

consisting of these m columns is of rank m, since p-1 is

nonsingular. Moreover, the nonzero elements in these columns

are confined to those row positions corresponding to the ordinal

positions in p-I of the columns themselves. Deleting the zero

rows would give a nonsingular m by m submatrix. The orthogonality

of p to each of the m columns, as required by condition (0)
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vanishes. Therefore the coefficients in the linear combination

vanish. But these include all of those elements of p which are

the (nj,_ nj)_ elements of blocks Pij for which n i > nj.

In view of (3), the desired conclusion follows. Thus all the

elements of P4 are zero except those of the principal diagonal

of square submatrices Pij" Furthermore, for a given Pij' the

elements of the principal diagonal are equal. But if P4 is of
!

this form, then so is its transpose, (P4) ° Also, any matrix
!

of this form comautes with C3o Thus (P4) C3

taking transposes, P4C'3 = C'3P 4. ltence, CI

CI ; C÷ and thus is the pseudo inverse of C

!

= C3 (P4) or,

= p-IcIp. That is,

according to the

above definition. The uniqueness follows since CI was shown

to be unique [70].

In view of Len_na 4ol, in the sequel CI will be used to

designate the pseudo inverse of a matrix C in Jordan form,

whether it is defined by equations (i) and (2), or by equation (3).

We now establish that the pseudo inverse given by equation (3) of

an arbitrary n by n matrix A exists and is unique.

Theorem 4.5: If A is an n by n matrix, then A÷

and is unique. Furthermore, A+ satisfies the following

exists

AA+A = A (li)

A+AA + = A+ , (12)

Proof: The existence of CI satisfying equations (1) and

(2) is guaranteed by Theorem 4.2 and the work of Penrose [70]. The
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existence of A+ then follows inmediately from Theorem4•1 and

equation (3)• Suppose A -- p-Icp _ P2-1CIP2, where both P and P2

satisfy condition (0). Then C - PP2-1CIP2p-l. Wewish to show

that if P and P2 each satisfy condition (0) with respect to A,

then P2P-I satisfies condition (0) with respect to C. There
!

exists a permutation matrix R such that C1 --R CR, and

therefore

-icPiPC = PPI -I ,

where P1 RP2 As P2 1 -i '= " = P1 R represents a mere rearrangement

of the columns of P2 -I' P1 satisfies condition (0) if P2 does.

It is sufficient, therefore, to show that P1P-I satisfies

condition (0) with respect to C if P and P1 satisfy condition

(0) with respect to A. We use Pi to designate row i of P

and pJ to designate column j of p-l. Similarly ipi will

designate row i of P1 and ip3 will designate column j of

-i
P1 " Suppose ek is a generalized null vector of maximal height

m of C. Then ipk and pk will be generalized null vectors of

maximal height m of A. If PPI -I = Q -- (qij), to confirm

condition (0) for PIP-1 , we need to show that if et, t _ k is a

generalized null vector of maximal height m of C, then
n

r qitqij = 0, and secondly if et, t # k is a generalized
i=l

null vector of C of height at most m, not of maximal height m,
n

°

then i=ir_ qitqik = 0. Now qij = (Ip3' Pi )" We now prove the

first part. By condition (0) for PI' (Ipt' IPk) = 0. Let
i

(p s }us--I be the set of generalized null vectors of maximal height

m * i
m which appear as columns of p-i Since p p-l(pp) r (P'Pi)P

i--I
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we have

n * i
ipt -- r (_pt, Pi ) p

i=l
(13)

k n k * i.
IP = z IP , Pi ) p

i=l

where (IPt' Pi ) = (Ipk' Pi ) = 0 if i # iI, i2, . . ., iu,

since by condition (0) ipt .and ipk can be expressed uniquely
z

as linear combinations of p s, s = i, 2, . .., u.

(14)

Hence,

n t * i n (IPk , o
0 = ( r (iP , Pi ) p ' z ' Pi ) pZ)

i=l i=l

n t * (Ipk *
r (iP , Pi ) ' Pi )

i=l

n

: r. qit qik
i:l

Therefore,

second part.

at most m, then (ipt, ipk) = 0 by condition (0). Now

for i i 1 i2, iu, and (lp k * pJ= , . .., , pj ) = 0 if

generalized null vector of maximal height m.

n

r qit qik : 0 as was to be shown. We now prove the
i:l

If et, t _ k is a generalized null vector of height

(IPt' Pi ) : 0

is not a

Hence,

n , ,

0 : z (lp t, pj ) (lp k, pj )
j--1

Therefore,

n
m

z qit qik"
i=l

n

r. qit qik
i=l

= 0

as was to be shown.
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CI PP2-1CIIP2 P-I. Thus, p-IcIpUsing Lemma 4.1, :

P2-1CIIP2 = A+ and A+ is unique.

Equations (ii) and (12) follow from the definition and

equations (4) and (5).

The question that naturally comes up now is whether a

unique pseudo inverse could have been obtained with a less severe

restriction on P than that given by condition (0). Suppose we

only required that any generalized null vectors of maximal height

k which appeared as columns of p-1 be orthogonal to all general-

ized null vectors of A which are of height less than k. The

following is then a counterexample to Lema 4.1, and thus to

Theorem 4.5.

Let

110 i °0 p _- I-i 1 p-i = 1

0 , 0 0 , 0

The above condition is satisfied as
!

(0, 0, i) is the

only column of p-i of height two and it is orthogonal to all null

vectors of C. It is easily verified by direct multiplication that

C = p-Icp. From Theorem 4 it follows that

CI 0010 0

_ 1 0

However, calculating C+ = p-IcIp we get
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C+ : p-1CIp : 0 0 0 # CI

-1 I 0

[emma 4.2: Let PAP "I : C where C is the Jordan canonical

form for A. If x is a generalized eigenvector of height k for

A corresponding to the eigenvalue u, then Px is a generalized

eigenvector of height k for C corresponding to u.

Proof: We first note that

(A - ul)n = (p-Icp - uI) n = [P-I(c - uI)P] n =

p'I(c _ ul)np

for any positive integer n. By assumption (A - uI)k-lx _ 0. This

implies that P-l(c - uI)k-ipx _ 0 and hence that (C - uI)k-ipx _ 0.

Likewise (A - uI)kx = 0 implies that (C - ul)kpx = 0. Hence Px

is a generalized eigenvector of height k for C corresponding

to the eigenvalue u.

Theorem 4.6: If u is a non-zero eigenvalue of A and x

is the corresponding eigenvector, then u-I is a non-zero eigen-

value of A+ and x is the corresponding eigenvector. If A has

rank r, then A+ has rank r.

Proof: If u is a non-zero eigenvalue of A with

eigenvector x, then Ax : ux. Hence A+Ax : uA+x. But this implies

that p-IcIpp-IcPx = uA+x, or p-IcIcPx = uA+x. But if x is

an eigenvector of A, then y = Px is an eigenvector of C
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corresponding to u by Lenma 4.2. From the form of CIc

Theorem 4.4, it follows that CIcy= y. Thus

-iclcpP X = X = _+X.

given by

Since u _ 0, the result then follows from the division by u. It

follows from Theorem 4.3 that the rank of A is the same as the rank

of A÷

In general, the property that (A-I) -I = A does not

carry over to the pseudo inverse defined above. The next theorem

gives us necessary and sufficient conditions for (A+)+ to be

equal to A provided that no two maximal chains of generalized

null vectors of A are of the same length k for k > i.

Theorem 4.7: Assume A is such that the length, k, of

each cahin of generalized null vectors of A is different for

k > i. Then (A+)+ = A if and only if there exist a matrix P

such that PAP -I = C, where C is a Jordan canonical form of A,

and in addition to property (0), P has the property that for each

chain of generalized null vectors of length, say k, of A

appearing as columns of p-l, the null vector of the chain is

orthogonal to all the other generalized null vectors of height at

most k which appear as columns of p-l.

Proof: First we show that (cl)+ = C. Let Cl, C2, . ..,

Ck_ 1 be the Jordan blocks of C corresponding to non-zero eigen-

values of A, and Ck be the matrix which is the direct sum of all

Jordan blocks corresponding to the zero eigenvalue. Then
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C : diag (Cl, C2, . .., Ck_l, Ck) .

It follows from Theorem 4.4 that

c I diag (Cl-1 -1 -1 T)= , C2 , • . ., Ck_ 1 , _ •

Let D be the Jordan canonical form of CI with

D = diag (DI, D2, . .., Dk_l, Dk)

The summands of D can be chosen so that there exist Pi' i = i, 2,

. .., k such that Ci-i = Pi'iDiPi, i = i, 2, . .., k-i and

CkT = Pk-IDkPk . Hence

*CI) ÷ = diag (PI-IDI-IPI , P2-1D2-1P2 , . . "' Pk-i iDi-I IPk-l'

Pk-iDkTPk)

: diag (C1, CZ, . .., Ck_l, _)

= C.

Hence (cl) + = C .

Suppose P has the property described in the theorem.

Ai lx 1Then if Xl, . .., xk with xi = is a maximal chain of

generalized null vectors of A which appear as colunms of p-l, then

xk, . .., xI with Xk_ 1 = (A+)ixk is a maximal chain of generalized

null vectors of A+.

Partition C with C = diag (Cl, . .., Ck) where the

Ci, i = i, 2, . .., k are the Jordan blocks of C. If Ci is a

Jordan block corresponding to a non-zero eigenvalue of A, let
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Hence

respect to

p-IQ-1DIQp

Qi be that matrix such that C"11 = Qi-iDiQi ' where Di is the

-I
Jordan form of Ci . If Ci is an ni by ni Jordan block

corresponding to the eigenvalue zero, then let Qi be the ni by n i

matrix all of whose elements are zero except the elements on the

diagonal from the (i, ni) position to the (ni, i) position. Each

of the elements on this diagonal is one. That is, in this case Qi

is a permutation matrix which reverses the order of the cohmms of

a matrix when the matrix is multiplied on the right by Qi" Also,

in this case Qi 1 = Qi" Let Q = diag (QI' Q2' • " "' Qk)" Now

CI = Q-IDQ where D = diag (DI, D2, . .., Dk). Thus A+ = P-IQ-IDQp.

Since P has the property described in the theorem, QP has property

(0) with respect to A+.

(A+)+ = P-IQ-IDIQp. Also, Q has property (0) with

CI Consequently, C = (CI)+ Q-IDIQ. Thus A p-Icp

= {A+)+.

Now assume that (A+) + = A.

A+. Then p-1CIp = R-1DR, or

Let D be a Jordan form for

c I = pR-1DRp -1 (15)

Also since (A+)+ = A, A= R-IDIR = p-Icp, or

C = pR-1DIRp -1 (16)

Let S = RP -I. Partitioning CI, D and S -I and

using the same sort of reasoning as in Lemma i we can replace equation

{15) by
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CII 0

0 C21
,0][0 0110 $2-I s2U_0 D2

(17)

I
where C2 and

I -i
Now C1 = C1

replaced by

D2 are the nilpotent parts of CI and D, respectively.

and C21 = C2T. Similarly, equation (16) can be

C1

0 C2

0 S1 1 0

-i
0 S2

S1 1 0

- 0 $2-I'

DII 0

0 D2I

(18)

Without any loss of generality, we can assume that C2 = D2. A conse-

quence of (17) is that

- - = $2 1 C2 . (19)C2_ $2 1

_o thatAlso, from (18) we o_t

C2S2 -1 = $2 -1 C2T (20)

Let Sij = (Skl) be a nij by mij partition block of $2 i. Suppose

nij > mim. It is easily verified by direct multiplication that

equation (19) implies that every element of S.. below the diagonal
13

containing sI , s2 etc. is zero. Similarly, (20) implies
,mij ,mij-i ' ,

that every element of Sij above the diagonal containing Sn. "
1J ,I'

Sn..-1,2' etc., is zero. If nij _< mij , then (19) implies that every
1j
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element of Sij below the diagonal containing Snij,l' Sn..1j-1,2' etc. ,

is zero, and (20) implies that every element of Sij above the

diagonal containing Sl,mij, S2,mij_l, etc., is zero. Thus, the two
-1

equations, (19) and (20), imply that the partitio n blocks of S 2

are sero if the blocks are not square and are of a diagonal form

otherwise. Since the chains are each of a different length, the

only square blocks of $2 -I are on the diagonal of $2-I.

Now let AJx I = Sj+l, j = 0, i, . .., k-l, be a maximal

chain of generalized null vectors appearing as successive columns

of p-l. Since D2 = C2, there is a corresponding maximal chain of

generalized null vectors of A+, say (A+)Jy I = Yj+l' j = 0, i, . ..,

k-l, which are colunms of R-I. The fact that (A+)+ = A implies that

Ak °

-JYk = Yj' j = 1, 2, . .., k

is a maximal chain for A. Thus Yl is a null -vector for A.

Furthermore, cince R has property (0), Yl is orthogonal to all

generalized null vectors of A+ of height at most k. From the

form of $2 -I, using the relationship R-I = p-Is-I, one can deduce

that Yk is a scalar multiple of the generalized null vector x1

maximal height k appearing as a column of p-l. But , according

to property (0) for P, xI is orthogonal to all other generalized

null vectors of A of height at most k, (except itself). Let

-i
P1 be the matrix obtained by replacing each maximal chain,

xI, x2, . .., xk by the corresponding Yk' Yk-l' " " "' Yl'

respectively. Then P1 has the property described in the theorem.

of
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Without requiring that the length of each chain of generalized

null vectors of length greater than one be different, one is able to

establish only sufficient conditions for (A+)+ : A. The following

is easily established from Theorem 4.7.

Corollary 4.1. If there exist a matrix P such that PAP -I = C

where C is a Jordan form of A, and in addition to property (0),

P has the property that for each chain of generalized null vectors

of length, say k, of A appearing as columns of p-l, the null

vector of the chain is orthogonal to all the other generalized null

vectors of height at most k which appear as columns of p-l, then

{A +) + : A.

Let PAP -I : C whereLema 4.5:

form of A, and P satisfies condition (0). If B : QAQ with

* Q-I *Q : , then PQ satisfies condition (0) with respect to B.

C is the Jordan canonical

Proof: First we show that if xi is a generalized null vector

of maximal height of A which appears as a colunm of p-l, then Qx i

is a generalized null vector of maximal height for B. Certainly Ak-lxi _ 0

implies that Q*Bk-IQxi _ 0. But, this implies that Bk-iQxi # 0. Also,

Aki = 0 implies that Q*BkQxi = 0 which implies that BkQx i = 0. If

Qx i E R(B), there exist a vector y such that By : Qx i. Hence

QAQ y : Qx i. Multiplying on the left by Q we have that AQ y = xi

which implies that xi E R(A). But xi _ R(A) by assumption therefore,

Qx i is a generalized null vector of maximal height for B.

Partition p-i into its columns, say, p-i = (Xl, x2' . . -, Xn).

Then Qp-I = (QXl ' Qx2, . .., QXn)" Let Yi : Qxi be a column of Qp-I
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which is a generalized null vector of maximal height k of B, and

Yi = Qxj be a distinct column of Qp-I which is a generalized null

vector of B of height at most k. Then (Yi' Yj) = (Qxi' Qxj) =

(xi, xj) = 0. Hence PQ satisfies condition (0).

_- * B+ + *Theorem 4.8: If PAP -I C and B = QAQ , then = QA Q .

= * PQ *BQP- 1Proof: PAP -I C and A = Q BQ implies that = C.

• , *B+Qp -1 CIBy Lemma 3, PQ satisfies condition (0). Hence PQ = ,

so that pQ*B+QP -I PA+P -I. This implies that B+ + *-- =QAQ. But

pA+p -I = CI"

p-i

We now impose some additional restrictions on the columns of

where PAP -I = C and C is the Jordan canonical form of A.

Condition (i): If P satisfies condition (0), and in addition,

the generalized null vectors of maximal height occurring as colunms

of p-i are orthogonal to all the generalized eigenvectors of A

corresponding to non-zero eigenvalues, we say that P satisfies

condition (i) with respect to A.

Condition (2): If the null vectors of A appearing as columns

of p-i are orthogonal to all the generalized eigenvectors of A

which are not null vectors of A, we say that P satisfies condition (2).

We note that for some matrices it is not possible to construct a

matrix P such that P satisfies either condition (I) or condition (2),

and at the same time transform the matrix into its Jordan canonical form.

Before establishing several properties for which the existence of

a P satisfying the above conditions is sufficient to guarantee, we

establish some subspace relationships.
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Theorem 4.9: Let X be an n-dimensional tlilbert space, and

A a matrix representation of a linear operator on X.

Then

a) X = N(A +) @ R(A),

b) X = N(A) g R(A+).

Proof: To prove (a) it is sufficient to establish that

any vector x in X can be written as y + z where y e N(A +) and

z e R(A) and also that the intersection of N(A +) with R(A) contains

only the zero vector. It follows from equations (11) and (12) that AA+

is a projection operator on R(A) and A+A is a projection operator

on R(A+). It also follows that (I - AA+) is a projection operator

on N(A +) and (I - A+A) is a projection operator on N(A). Now,

any vector x in X can be written as x -- AA+x + (I AA+x) where

AA+xeR(A) and (I- AA+)xE N(A+). Assume x is in N(A+), then

AA+x = 0. If x is also in R(A), then AA+x = x. But this implies

that x = 0. The proof of statement (b) follows similarly.

Theorem 4.10: If there exist a matrix P such that PAP -1 -- C

where C is the Jordan canonical form of A, and P satisfies

conditions (0) and (2), then

a) R(A+) = R(A*),

b) (A+A) * = A+A,

c) A÷AA* = A,

d) AA÷(A÷)* = CA+)",

, + * ÷A+.e) (AA) = CA)
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Proof: (a) Since R(A*) = N(A)"L, it suffices to show that

R(A +) = N(A)L. Let x be any vector in R(A+), then x is a linear

combination of colLmms of p-I which are not generalized null vectors

of A+ of maximal height, hence, not null vectors of A. But, the

null vectors of A appearing as columns of p-i form a basis for N(A),

and by condition (2) are orthogonal to all other generalized eigen-

vectors of A which are not null vectors of A. It follows that

R(A +) = N(A) _'.

(b) Since R(A ÷) = N(A) _, it is easily established

that A+A is an orthogonal projection operator on R(A+). But, this

implies that (A+A) * = A+A.

(c) Let x ¢ X, then Axe R(A ) = R(A ÷) so that

A x E R(A+). But, A+A is an orthogonal projection operator on R(A+),

A+AA * * A+AA * *hence x = A x from which it follows that = A .

(d) Since R(A +) R(A* *)= ) we have that R(A + = R(A**) =

R(A). Let x _ X, then A+*x e R(A). Since AA+ is a projection

operator on R(A) we have that AA+A +*x = A+*x. Hence AA+A +* = A+*.

(e) Let x 1, x2,..., xn be a basis for X such

that Xl, x 2 , x k spans R[(AA* +] . ., • • . ) and Xk+ I, . , xn spans
• * * * *

N(AA ) = N(A ). Then AA Xl, . .., AA xk spans R(AA ) = R(A).

Estend this to a basis for X with Zk+ I, . .., Zn, such that

AA* * *
Zk+l, . .., zn spans N[( )+]. Also A Xl, . .., A xk spans R(A*).

Extend this to a basis for X with Yk+l' " " "' Yn such that Yk=l' '

• "' Yn spans R(A*¢= N(A). Using the fact that AA + and A+A are

projection operators we have the following:
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and

A÷: AA xi A xi

Z. 0 ÷
1

A*+: A xi xi i _- 1 7 2, . . ., k

But

Yi 0 i = k + i, . .., n

(AA) : AA xi xi i = i, 2, . . ., k

z. 0
1

i = k + i, . .., n

Hence, it follows that (AA*) + = A*+A + .

Theorem 4.11: If there exist a matrix P such that PAP -I = C

where C is the Jordan canonical form of A and P satisfies condition

(i), then

a) N(A +) = N(A*),

b) (AA+)* = AA+ ,

c) A*AA + = A ,

d) (A'A)+ --A÷A*+ .

Proof: (a) It suffices to show that N(A +) = R(A) _, since

* A)/-N(A) = R( . Let x be any vector in R(A), then x is a

linear combination of colunms of p-i which are not generalized

null vectors of A of maximal height, hence, not null vectors of A+ .

By condition (i), the generalized null vectors of maximal height
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of A are orthogonal to all other generalized eigenvectors of A

which are not generalized null vectors of A of maximal height.

Hence, it follows that N(A +) = R(A)2".

(b) Since N(A +) = R(A_, AA + is an orthogonal pro-

jection operator on R(A) which implies that (AA+) * = AA+.

(c) Using (b) in the equation AA+A = A we have

(AA+)*A = A. Taking the conjugate transpose of this equation we

A*AA + *have that --A .

(d) Let Xl, . .., x n be a basis for X such

* +] . o •that Xl,..., x r spans R[(AA) and Xr+l, , x n spans

N(AA) = N(A). Then A AXl, . .., AAX r spans R(AA) = R(A).

Extend this to a basis for X with vectors Zr+l, . .., zn such

* +] )that they span N[CA A) . Now Ax I . .., Ax r spans R(A).

Extend this to a basis for X with vectors Yr+l' " " "' Yn such

that they span N(A ) --- N(A+). Then using the fact that A+A and

AA+ are projection operators we get:

A*+ : A Ax i ÷ Ax i i = i, 2, . . ., r

Z. -_ 0
1

i = r + I, . . ., n.

and

A+ : Ax i xi i = I, 2, . .., r

Yi _ 0 i --r + i, . . ., n.

But

(A_A) + *: A Ax i _ xi i = i, 2, . .., r

It follows that

Zo

1

(A'A) + = A+A*+.

÷ 0 i=r+l, . . .,n.
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Theorem 4.12: Let PAP -I = C where C is the Jordan canonical

form of A. Conditions (I) and (2) are necessary and sufficient for

the following:

(AA÷)* ÷1) = _ ,

2) (A+A) * = A+A.

4.11.

condition (I) or condition (2)° If P

(i) we will show that R(A) _ N(A+)J'.

i

-i
linear combination of colunms of P

null vectors of maximal height for A.

Proof: The sufficiency is established in Theorems 4.10 and

To show the necessity, assume P does not satisfy either

does not satisfy condition

Let x E R(A), then x is a

which are not generalized

But, since P does not

satisfy condition (I), there is a generalized null vector of maximal

height for A, and hence a null vector of A+, which is not

orthogonal to R(A). Hence R(A) # N(A+) I.

But, R(A) @ N(A+) _ implies that AA+ is not an orthogonal

projection operator on R(A), which implies that (AA+) * _ AA +.

In case P does not satisfy condition (2) we establish

that R(A +) # N(A)_. Let x _ R(A+), then x is a linear

combination of colunms of p-i which are not generalized null

vectors of A+ of maximal height, hence, not null vectors of A.

But, since P does not satisfy condition (2), there is a null

vector of A which is not orthogonal to R(A+). Hence R(A +)

N(A)J'. But this implies that A+A is not an orthogonal projection

operator on R(A+) which implies that (A+A) * _ A+A.
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Thus, it follows that P satisfying conditions (I) and

(2) is necessary and sufficient for the pseudo inverse defined above

to be the same as the pseudo inverse defined by Penrose. A special

case of Theorem 4.12 which is of interest in its own right is the

following.

Corollary 4o2 :

Jordan canonical form, then

I) (A+A) * =

2) (AA+)* =

If A is unitarily equivalent to C, its

A+A,

+I

Proof: If A is unitarily equivalent to C, then there

,
exists a unitary matrix U such that UAU = C. Since the cohmms

of U are mutually orthogonal we have conditions (i) and (2), and

thus the conclusion by Theorem 4.13o

In particular, if A is normal the definitions are equivalent.

Theorem 4.13: If _ # 0, then (oA) + = _-IA+.

Proof: If a = I, the theorem is trivial, so assume that

# I. Let P(_A)P -I = C where C is the Jordan canonical form

of oA. Then (oA)+ = p-IcIp. Let C1 be the direct sum of the

Jordan blocks corresponding to non-zero eigenvalues, and C2, C3,

• .., _ be the Jordan blocks corresponding to the zero eigenvalue.

Then, without loss of generality we assume that C = diag

(el, C2, . .., Ck). Let Q1 be the matrix such that QI(_-IcI)QI -I =

-iClD1 where D1 is the Jordan canonical form of e . If Ci,
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Hence, (o_)

n. -i n.-2

i = 2, 3, , k, is an ni by ni matrix, let Qi diag (_ 1 I

. .., a, i). It is easily verified by direct multiplication that

Qi(a-ici ) Qi -I = Di where Di = Ci. Letting Q = diag {QI' Q2'

• .., Qk), and D = diag (DI, D2, ° .., Dk) it follows that

Qe-IcQ -I = D where D is the Jordan canonical form of a-it. Then

{e-Ic)+ = Q-IDIQo From the fore of Q, it is easily verified that

it satisfies both conditions (i) and (2) o Hence, by Theorem 4.12

(e-ic)+ -- (e-it) I. But Price [73] has shown that {a-ic)I = _CI.

Now, PAP -I = a-Ic --Q-IDQ implies that QPAp-IQ -I = D. It is

easily shown that QP satisfies condition (0). Thus, QPA+p-IQ -I =

DI or PA+P -I = Q-IDIQ.

+ = p-Icl p

p-i [ot-l((,-ic)I] p

a-Ip-I(_-ic) + p

a-Ip-1CQ-1DIQ) p

a-ip-l(pA+p-l) p

= or-IA+

Lenmm 4.4: If there exist a matrix P such that PAP -I = C

* -i
and P satisfies conditions (0) and (2), then (P) satisfies

condition (i) provided that the null vectors of A appearing as

colunms of p-i are mutually orthogonal.

Proof:

-I

P , and Yi'

n
{xi} i=l and

Let xi, i = i, 2, . .., n, be the columns of

i = 1, 2, . .., n be the columns of P . Now

{Yi t i_l form biorthogonal bases for X. Let x i
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be a null vector for A. Expanding xi in terms of the Yi' we get

n

= r. (xi, xj) yj
xi j =i

But, (xi, xj) = 0 unless i = j, since P satisfies condition (2),

and the null vectors of A appearing as columns of p-I are

mutually orthogonal. Then (xi, yj) = (xi, xi) (yi, yj) for any

j = i, 2, . .., n. But (xi, yj) = 0 for j _ i, hence (Yi' Yj ) = 0

for j _ i. Now, since xi is a null vector of A, it follows that

Yi is a generalized null vector of maximal height for A . Hence

(p*)-I satisfies condition (I).

Theorem 4.14: If there exist a matrix P such that PAP -I = C

where C is the Jordan canonical form of A and if P satisfies the

conditions in Lemma 4.4, then

*A * +fl) = (A) ,

b) A*+A*A = A ,

c) A+A+*A* = A+ .

Proof: (a) Let PAP -I = C where C is the Jordan canonical

form of A. Let C1 be the direct sum of the Jordan blocks corres-

ponding to non-zero eigenvalues, and C2, C3, . .., Ck be the Jordan
)

blocks corresponding to the zero eigenvalue. Without loss of generality

we assume that C = diag (CI, C2, . .., Ck). Hence, C = diag

* T kT * -i(C1 , C2 , . .., C ). Let Q1 be the matrix such that QICI Q1 = D1

* T
where D1 is the Jordan canonical form of C1 . If Ci , i = 2, 3, . . .,k
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is an ni by ni matrix, let Qi be the ni by ni matrix all of

whose elements are zero except the elements on the diagonal from the

(I, ni) position to the (ni, I) position. Each of the elements on

this diagonal is one. That is, in this case Qi is a permutation

matrixmatrix which reverses the order of the columns of a matrix

when the matrix is multiplied on the right by Qi' and reverses the

order of the rows of the matrix when the matrix is multiplied on the

-I
left by Qi" It is evident that Qi = Qi

where Di = Ci, i= 2, 3, . . o, k. Letting

and Q = diag (QI' Q2' " " "' _) we have

and QiciTQi -I = Di

D = diag (DI, D2, . .., _)

QC*Q -I = D where D is the

Jordan canonical form of C o Now, PAP -I C implies that P*-IA*p* =

C* _ _ _ == q-lu 4. This implies that QP*-IA*p*q-I D. If y is a generalized

null vector of maximal height for A which appears as a column of

p*Q-I *, it follows from the form of Q and y is a column of P

• *-I
which is of maximal height for A . But, by Lenmm 4.4, (P) satisfies

• -i
condition (i) which implies condition (0). Hence Q(P ) satisfies

condition (0). Thus, we have QP*-I(A*)+P*Q-I = DI. Now Q obviously

satisfies condition (0) with respect to C so that (C*)+ = Q-IDIQ.

• + *I
But, Q also satisfies conditions (i)and (2) so that (C) -- (C) ,

I I*
and Desoer and Whalen [36] have shown that --[C*)= (C) . Hence,

* +
(A) = p*(Q-IDIQ)p*-I

* C* +p*-i= PC )

= p*(c I)*P*-I

(A+)*
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(b)

R(A +) R(A*= )

R(A ) = R(A).

Since (A*) +A*

follows that

(c) Since R(A +*) : R(A), it follows that

Taking conjugate transposes we get A+A+*A * -- A+.

Since P satisfies conditions (0) and (2),

by Theorem 4.10(a). This implies that R(A +*) :

For any vector x in X, it follows that Axe R(A+*).

is a projection operator on R(A *+) : R(A+*), it

(A*)+A*Ax : Ax and thus (A+)*A*A : A.

 a÷A÷* __A÷*.

0

Definition 4.2: The annihilator S of any subset S of X,

,
is the set of all vectors y in the dual space of x, say X , such

that (x, y) is identically zero for all x in S.

Theorem 4.15 : (A+A) * and

on the spaces of annihilators of

(AA*) * are projection operators

N(A) and N(A+), respectively.

Proof: Using the fact that A÷ A+AA += we have (A+A) *

(A+AA+A) * (A+A) * (A+A) * *= . Hence (A+) is idempotent, and thus

a projection operator. From Theorem 4.9, X = N(A) _ R(A+), and

, O O O

hence that X = N(A) _ R(A +] ,wnere Z is the space of annihi-

O

lators of Z. Let y be a vector in N(A) , then for any x in X

we have (x, y) = (A+Ax + [I A+A] x, y) = (A+Ax, y) + ([I - A+A] x, y).

But, I - A+A is a projection operator on N(A) so that (I A+A) x eN(A).

Hence, ([I - A+A] x, y) = 0 so that (x, y) = (A+Ax, y) : (x, (A+A* y).

Since this must hold for each x in X, this implies that (A+A) * y = y.

Now assume y e R(A+) °. Then for any x in X we have that (x, y) =

(A+Ax, y) + ([I - A+A]x, y) = ([I - A+A]x, y) since A+Ax e R(A+).

Now ([I A+A]x, y) (x, [I A+A] *- = y) = (x, y) - x, (A+A)* y).
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Hence {x, (A+A)* y) = 0.

X, it follows that (A+A)*

Again, since this must hold for each x in

y = 0. The other part follows in a similar

manne r.

Theorem 4.16: R{A)

* +

invariant under (A) .

0 , 0

is invariant under A and R(A +) is

O

Proof: Let y E R(A) , then for any x in X we have

(x, A y) = (Ax, y) = 0 since Ax E R(A). This implies that

, 0 o ,

A y c R(A) and thus that R(A) is invariant under A . The

second part of the theorem follows similarly.

Theorem 4.17: Let tr(A) represent the trace of the matrix A.

Then tr(A+A) = tr (AA+) = r(A) = r(A+).

Proof: The first equality is a property of the trace.

The last one was established in Theorem 4.6. We now show that

tr(AA +) = r(A). Using the properties of the trace we have that

tr(AA +) = tr(p-iccIp) = tr(CCIpp -I) = tr(CCI). But, Penrose [70]"has

shown that tr(CC I) = r(C), hence tr(AA +) = r(C) = r(A).

We proceed now to explore the use of A+ in solving systems

of linear equations. A method for computing A+ is given and an

example is presented.

The following theorem is essentially a consequence of a

minimal property for the Penrose pseudo inverse.
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Theorem 4.18: If the system of linear equations Ax= b

is consistent, then x I = A+b is a solution of the system. If

Ax = b is inconsistent, then for any x in X,

whe re

IIP(AxI - b) [I < IIP(Ax- b) II ,

A = p-Icp and xI = A+b.

(21)

Proof:

there exist a vector x2

Thus, if (21) is valid,

Ax I = b.

It suffices to prove the inequality (21). For if,

in X such that Ax 2 = b, I IP(Ax2 - b) ll = 0.

I IP(Ax 1 - b) l] = 0, which implies that

Now P(Ax I - b) = P(AA+b - b) = PAA+b - Pb.

+

definition of A , P(Ax I - b) = CCIpb - Pb. Let

where bI ¢ R(C) and b2 E R(C)_. Then P(Ax 1

(bI + I)2) = bI bI - b2 = - b2 since CC I

Using the

Pb = bI + b2 ,

b) = CCI(b I + b2)

is a projection on R(C).

Thus

lIP(AxI - b) ll = ]1 b2ll. (22)

If x is any vector belonging to X, then P(Ax - b) = CPx - Pb.

Since CPx c R(C),

]]CPx-(b I +b2) ll = ]]b2] ] + ]]CPX-bl] ].

The' inequality (21) follows immediately from (22) and (23).

Since A+ is unique, the solution A+b to the consistent

system of equations Ax = b is unique. One might ask from whence

(23)
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comes this uniqueness. Lanczos [60] has given an indirect answer

to this question. In fact, his answer applies directly to the

solution of such a set of equations if the Penrose definition of

the pseudo inverse is used° Lanczos shows that the uniqueness for

the solution is obtained by adding conditions to be satisfied by

the solution vector x. The pseudo inverse defined by Penrose yields

the unique solution obtained by adding the condition which together

with Ax : b has the unique solution A+b.

As has been pointed out before, the columns of p-1 are a

,
canonical basis for A. Also, the columns of P are eigenvectors

or generalized eigenvectors of A .

null vector of maximal height of A

then the j-th cohnm, xj, of P-1

Now if yj is a generalized
,

which appears as a colunm of P ,

is a null vector of A and,

consequently, a generalized null vector of maximal height of A+.

But if x e R(A+), then x is a linear combination of columns of p-1

which are not null vectors of A. This means that, if X is the set

,
of all generalized null vectors of maximal height of A which appear

as columns of P and X1 is the linear span of X, then R(A ÷) = X1 .

Thus, if x 1 = A÷b, then x 1 satisfies the system

^,
where G

cohmms of

belong to

[Axl []0
is a matrix whose columns span X1. The fact that the
^* ^,

G span X1 implies that the cohmms of G do not
, A

R(A ). Hence( ^ ) has rank n. Hence, the auxiliary
G

(24)
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condition is that Gx I : 0 or in words, xI must be orthogonal

,
to all generalized null vectors of maximal height of A .

To obtain a computational procedure for obtaining A+ , we

begin with a factorization of A. Let B be an n by r matrix of

rank r such that A = BG. Now Bi : (B*B)-IB * is a left inverse

• * -I
of B and G1 = G (GG) is a right inverse of G. Making use of

equation (ii), we have

GA+B : I (Z5)
r

^

where Ir is the r by r identity matrix. Let B be an n-r by n
^

matrix such that if x is a column of B, then x is a generalized

null vector of A of maximal height, say k, and x is ortho-

gonal to all generalized null vectors of height at most k. In

-i
other words, the columns of B could be chosen as columns of P

which are generalized null vectors of maximal height for A. Then

the partitioned n by n matrix [B, B] has rank n. Furthermore,

since a generalized null vector of maximal height for A is a

null vector for A+ we have

A+B : 0. (26)

From the discussion given above, it follows that

GA + = 0 .

(G)
The matrix h is an n by n matrix of rank n. Combining

equations (25), (26) and (27) we have

(27)
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and solving for A+ we get

A+ [B,B] : Zr 0

0 0

-1

i o1A+ : [B, _1-1

0 0

(28)

In view of equation (28) the first step in the computation of A+

is the determination of G and G. Theorem 4.1 gives us a technique

for obtaining the generalized null vectors of A of maximal

height. These orthonormal vectors are colmms of B. G is obtained

by computing the appropriate vectors in the dual chains.

We compute a simple example to illustrate the technique.

Consider the matrix

A

4 2 -3

-2 0 1

2 2 -2

The rank of A is 2. Anull vector of A is xI = (i, i, 2)T. We

solve the system of equations

A2

T
xI

X2 = (2, -4, i)T.

x 2 -- 0

to obtain The rank of A2 is one which is the
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same as the rank of A3. So we conclude that x2 is a generalized

null vector of maximal height 2 for A and the only column of B.

Now Ax 2 = (-3, -3, -6)T = x3. The single row of G is the transpose

of the solution of

T 0]
x3 Y :

where @ is the three by one null vector. This solution is

y = (-i/18, -1/18, -i/9) T. Let

S 2 1

-i 0

1 1

and G :

2 0 -i]
0 2 -I

Then

_

-i

I:o IlO0i0I0
-1/18-1/18 1/ 0 0 0

2 1 2

-i 0 -4

1 1 1

5/12 -1/12 -3

-1/12 5/12 -3

-1/6 -1/6 -6

I 0 0

0 1 0

0 0 0

4/3 1/3 -4/3

-i 0 2

-1/3 -1/3 1/3

23 S -26 1

= 1/36 -19 -1 34

-2 -2 -4

L
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4.3. Pseudo Inverses of Non-S_uare Matrices

We now proceed to investigate pseudo inverses of not necessarily

square matrices on finite dimensional Hilbert spaces. Let X and Y

be finite dimensional Hilbert spaces of dimension m and n, respectively.

Let A be a linear transformation from X into Y. We will represent

the set of all linear transformations from X into Y bY [X, Y].

Definition 4.3:

mean a linear transformation A+ E [Y, X] such that

Let A e [X, Y]. A pseudo inverse of A will

AA+A = A, (1)

A+AA+ -- A+ (2)

Theorem 4.19: Let A e [X, Y]

a) If B e [Y, X] such that ABA = A and

BAB = B, then X= N(A) _ R(B) and Y = R(A) _N(B).

b) Conversely, if U and V are subspaces of X and Y,

respectively, such that X = N(A) $ U and

Y = R(A) ® V, then there exists a unique B such

that B c [Y, X] and ABA = A, BAB = B with

R(B) = U, N(B) = V.

Proof: (a) Let xeX. Then x can be written as BAx + (I -BA)x

where BAx e R(B) and (I - BA) x e N(A). Assume x is in N(A)

and also in R(B). Then Ax = 0, and there exist a vector y in Y

such that By = x. Hence ABy = 0 which implies that BABy = 0.
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Now BAB = B so that By = x = 0. Hence X = N(A) 8 R(B).

The fact that Y = R(A) 8 N(B) follows similarly.

(b) To show this part, let U and V be as required.

Let Xl, x2, . .., xt, Xr+ 1, . .., xn be a basis for X such that

Xl, x2,..., x r spans U, and Xr+l, Xr+2,..., xn spans N(A).

Then AXl, Ax2, . .., Ax r spans RCA). Choose Yr+l' Yr+2' " " "' Ym

so that AXl' Ax2' " " "' AXr' Yr+l' " " "' Ym is a basis for Y.

Define B as follows:

B {Axi) = xi i = I, 2, . . ., r

By i = 0 i=r+l, . . .,m

By Paige and Swift [69] this determines B uniquely. It follows

from the construction of B that N(B) = V and R{B) = U. Also,

it follows inHnediately that ABA = A and BAB = B.

In view of Theorem 4.19, any conditions which are sufficient

to determine a unique pseudo inverse are equivalent to a specification

of the null space and range of the pseudo inverse in question. We

note that for the Penrose pseudo inverse, AI , that N(A I) = R(A) 1

and R(A I) = N(A) "L. Also, for the definition given in (3) we note

that R(A +) = X 1 where X1 is the linear span of the set of all
,

generalized null vectors of maximal height of A which appear as

,
colunns of P , where of course, P satisfies condition (0). Also

N(A +) is the space spanned by the set of generalized null vectors

-1
of maximal height of A which appear as columns of P .



151

Definition 4.4: Let X-- S 8 T. If x = s + t is an element

of X, the linear transformation mapping X onto S such that s

is the image of x under this transformation is called the projection

of X onto S along T and will be denoted by PS/T" If

S = T, then it is an orthogonal projection and will be denoted

by PS'

Theorem 4.20:

following:

Let X = S 8 T. Then PS satisfies the

i) PS exists and is unique

2) PS is linear

3) PS PS = PS

4) PS is an orthogonal projection if and only if

* ps 2PS = PS = '

Proof: These are well known results and are included for

completeness. They may be found in Paige and Swift [69].

Theorem 4.21: Let A E [X, Y] and B _ [Y, X] with B a

pseudo inverse of A. Then

I) AB = PR(A)/N(B)

2) BA = PR(B)/N(A)

Proof: We establish (i), and (2) is established in a

similar manner. Let x be any vector in X, then x = y + z, where

y e R(A) and z c N(B). Since ABA --A we have that (AB) (AB) = AB

so that JiB is a projection. Also ABx = ABy + ABz = ABy. But
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y E R(A), hence there exist a vector u such that Au -- y.

Therefore, ABx = ABAu = Au = y. }tence AB = PR(A)/N(B)"

Now, if A ¢ [X, Y] and B c [Y, X] with R(A) = N(B)

and N(A) = R(B) , then B is the Penrose pseudo inverse of A.

For the remainder of this chapter, we will designate this unique

pseudo inverse by AI .

Theorem 4.22: Let A s [X, Y],A t = AIAB and AS = BAR I,

where B is any pseudo inverse of A. Then At and AS are

pseudo inverses of A.

Proof: By direct substitution into the equations

defining a pseudo inverse for A, and using the fact that B

satisfies these equations we get

AA#A : AA+ABA : AA+A = A.

Also A#AA # : A+ABAA+AB = A+AA+AB = A+AB = A #. Similarly, AS

is shown to be a pseudo inverse of A.

A more general result is given in this next theorem.

Theorem 4.23: If B and C are any pseudo inverses of A,

then AS = BAC is a pseudo inverse of A.

and

Proof: By direct substitution again we get

AASA = ABACA = ACA = A

ASAA S = BACABAC -- BABAC = BAC = AS .

Hence BAC is a pseudo inverse of A.



155

This seems to indicate a relationship between any two

pseudo inverses of A. The existing relationship is established in

the next theorem.

Theorem 4.24: Let B and C be any two pseudo inverses

of A, then there exist nonsingular P and Q such that

C = p_-i

Proof: Let xI, x2, . .., Xr, Xr+l, . .., xn be a basis

for X such that Xl, x2, . .., xr spans R(B) and Xr+l, Xr+2, . ..,

xn spans N(A). Now AXl, . .., Ax r spans R(A). Complete this

to a basis for Y by selecting Yr+l' " " "' Yn so that they span
! !

N(B). This completely defines B. Likewise, let x i' x 2' " " "'
! ! ! ! !

x r' x r+l' " " "' x n be a basis for X such that x I' x 2' " " "'
] ! ! !

x r spans R(C) and x r+l' ' " "' x n spans N(A). Now Ax i'
!

• .., Ax r spans R(A). Complete this to a basis for Y with
! ] ! !

Y r+l' " " "' y m' so that Y r+l' " " "' y m spans N(C). Define

P and Q as follows:

!

PX. = X •
1 1

!

Q(Axi) = Ax i

!

_/i = Y i

It follows from the above that

-1
that C = PBQ .

i = i, 2, . . ., n

i = i, 2, . . ., r

i = r + i, . . . m

A = Q-lAp = QAp-I and

Corollar Z 4.3: Let B be a pseudo inverse of A, then PBQ -I

is a pseudo inverse of A if and only if Q-lAp is a pseudo inverse of B.
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Proof: Let PBQ -I be a pseudo inverse of A. This implies

that PBQ-IAPBQ-I = PBQ-I and APBQ-IA = A. Hence (Q-lAp) B(Q-1Ap) =

Q-I(APBQ-I)P : Q-IAp and B(Q'IAP)B = P-I(pBQ-IAPBQ-I)Q = p-I(pBQ-I)Q = B.

Hence Q-lAp is a pseudo inverse of B. The converse is

established in a similar manner.

Consider the system of linear equations given by Ax = b,

where x and b are vectors. A necessary and sufficient condition

that a solution exist is that b is in the range of A. In case

b _ R(A), the least squares solution is given by x : Alb where

A I is the Penrose pseudo inverse. However, if B is any pseudo

inverse of A, and A # = BAA I, then x = A#b is also a least

squares solution. This is the conclusion of the next theorem.

Theorem 4.25: Let A# : BAA I where B is any pseudo

inverse of A, then xI : A#b is a least squares solution to the

system of linear equations given by Ax = b.

Proof: Consider flaxI - b l]. Substituting in for xI we

get il l bll: ll #y-Yll: li  lY-Yll: li lY-YlI.

The result follows from the work of Penrose [70].

We also note that the following theorems hold for any

pseudo inverses, not necessarily just the Penrose pseudo inverse.

Theorem 4.26: For the matrix equation AXB : C to have a

solution X, a necessary and sufficient condition is that AA#CB#B : C

in which case, the general solution is

X : A#CB # + Y - A#AYBB #
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where A#, B# are any pseudo inverses of A and B respectively,

and Y is arbitrary to within having the dimensions of X.

Proof: If XI satisfies AXB = C, then

C = AXIB = AA#AXBB#B = AA#CB#B.

Conversely, if C = AA#CB#B, then A#CB # is a particular solution.

For the general solution, AXB = 0 must be solved. Any expression

of the form X = Y - A#AYBB # is a solution of AXB = 0. Hence the

conclusion follows.

Theorem 4.27: A necessary and sufficient condition for the

equations AX = C and XB = D to have a common solution is that

each have a solution and AD = CB.

Proof: If AX = C and Yd3 = D have a common sulution then

clearly each has a solution and

AXB = BC

AXB = AD

so that CB = AD. In order to obtain the sufficiency of the

condition, let

X = A#C + DB# A#ADB #

where A# and B# are any pseudo inverses of A and B, res=

pectively. It is easily verified by direct substitution that this

is a solution provided AD = CB, AA#C = C and DB#B = D.



G_dYrER5

APPLICATIONS

S.i Linear Systems of Equations :

We first consider the system Ax = y, where A is a p by

n matrix of constants, x is an n by i vector of unknowns

and y is a p by I vector of constants. There is no easy way

to decide whether this system is consistent. The following is a

simple technique using the Rao definition 2.4 of a pseudo inverse

A- of A to check for consistency and once consistency is estab-

lished the solution is irmnediate.

Len_a 5.i: Let A-A = H for a given pseudo inverse A-. Then

a) It 2 = H

b) #d! = A

c) The solutions of Ax = 0 can be expressed as (H - l)z

where z is arbitrary.

d) A general solution of Ax = y, when consistent, is

Ay+ (H - I)z.

e) q x has a unique value for all x satisfying the

equations Ax = y, if q H = q .

Proof: a) Since, by theorem 2.5, AA-A = A, pre,mltiplying by

A- gives A-AA-A = A-A or H 2 = H.

b) Also, by Theorem 2.5, A(A-A) = A which implies

that AH = A.

156
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c) Since AH -- A, r(H) > r(A), where r(.) is

the rank of ('). But, A-AH -- H so that r(H)> r(A). Hence,

r(}I) = r(A). Also r(H - I) = n - r(H) = n - r(A). Since A(H - I) =

0, the colunms of H - I supply all the solutions of Ax = 0. Hence,

a general solution is (H - I)z where z is arbitrary.

d) Since A-y is a particular solution of Ax = y,

the general solution is A-y + (H - I)z.

e) Substituting in q x a general solution of

* * _ * * * _

AX = y we get q [A-y + (H - I)z] = q A y + q Hz - q Iz = q A y

if qH=q.

To avoid complications make A square by adding zeroes.

Recall that given a matrix A, there exist a non-singular B

such that BA = H where H has the following properties.

a) The diagonal elements are 0 or i.

• th
the 1

.th
b) If the i diagonal element is i, all elements in

cohm_ and all elements preceding 1 in the ith row

are 0.

th
the j

ment in the ]

.th
c) If the ] diagonal element is 0, all elements in

row are 0, and also those below the 0 diagonal ele-

.th
colulm.

.th
Define the matrix G as a diagonal matrix with its i

diagonal element 1 if the ith diagonal element of H is 0,

and 0 otherwise.

Theorem 5.1: With A, B, H and G as defined above the

following are true:
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a) H2 = H (H is idempotent)

b) AH--A

c) ABA--A and hence B is apseudo inverse of A by

definition (2.4).

d) Ax --y is consistent if and only if (;By = o, i.e.,

if the r_, r_ h th _h, . . ., rows of H are null, then the r 1 , r ,

..., elements in By must be O.

e) A general solution of Ax = y is By + (H - I)z where

z is arbitrary.

f) q x is unique if and only if when x satisfies Ax --y

we have q H = q .

Proof: a) This is established by direct multiplication.

b) Since BA = H and B is non-singular, we have

and by (1),that A = B-1H. Hence, Aft = B-1H 2

Thus, AH -- A.

B-IH 2 --B-IH = A.

c) Since BA-- H, ABA = AH --A.

d) Since B is non-singular, if Ax --y is

consistent, so is BAx = By or Hx = By, and conversely. If the

rth row of H is zero, then the rth element of Hx is zero

and so must be the rth element of By. Conversely, if this is

true x = By is obviously a solution of Hx = By.

e) and f) are established as in lermna 5.I.

If, in addition to B, we know which of the rows of H are null,

we have an automatic test for consistency of Ax = y, while finding a
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th th th
solution. Let the r I , r2 , . .., rk rows in H be null. Then

we need only compute By and examinewhether the r_h, . .., r_

elements are" 0. If they are, the equations are consistent, in

which case By itself is a solution. It is important to note that B

is a non-singular inverse, although A may be singular. This is

necessary for the consistency test given in (d). The Penrose pseudo

inverse is necessarily singular if A is singular, but if the system

is known to be consistent, it can be used to obtain a general solution

of Ax = y, as is ascertained in the next theorem.

Theorem 5.2: The general solution of the vector equation

Ax = y is x = A+y + (I A+A)z, where z is arbitrary, provided that

the equation has a solution.

Proof: Suppose x satisfies Ax = y. Then

y = Ax = AA+y + A(I - A+A)z

= AA+y + (A- AA+A)z

AA+y since A = AA+A.

Hence, A+y is a particular solution of Ax = y. For the general

solution, we must solve Ax = 0. Now any expression of the form

x = (I - A+A)z satisfies Ax = 0 and conversely if AX = 0 then

x can be expressed in the form (I A+A)z.

We now consider more general systems of linear equations in the

next two theorems.

Theorem 5.3: A necessary and sufficient condition for the

equation AXB = C to have a solution is
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AA+CB+B : C,

in which case the general solution is

X : A+CB + + Y A+AYBB +,

where Y is arbitrary to within having the dimensions of X.

Proof: Suppose X satisfies AXB : C. Then C : AXB :

AA+AXBB+B : AA+CB+B. Conversely, if C : AA+CB+B, then A+CB + is

a particular solution of AXB = C. For the general solution we nmst

solve AXB = 0. Now any expression of the form X = Y - A+AYBB +

satisfies AXB = 0 and conversely, if AXB = 0, then X = X - A+AXBB +.

It follows that the general solution is as given.

It might be noted that the only property required of A+

for Theorem 5.5 is AA+A = A.

Theorem 5.4: A necessary and sufficient condition for the

equations AX = C, XB = D to have a conlnon solution is that

each equation should individually have a solution and that AD = CB.

Proof: The condition is obviously necessary. To show that

it is sufficient, put X = A+C + DB + -A+ADB +, which is a

solution if the required conditions AA+C = C, DB+B = D, AD = CB

are satisfied. The first two conditions come from Theorem 5.3 to

guarantee that each equation individually has a solution. Again

it should be noted that the only property required of A+ is that

AA+A = A.

When the system Ax = y does not admit of an exact solution,

x = A+y + (I A+A)z as given in Theorem 5.2 nevertheless gives
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a "best" solution in the sense of least squares. That is, if y is a

vector which is not in the range (column) space of A, x = A+y + (I - A+A)z

is a vector such that Ax is the projection of y on that space. Thus

Ax is as "close" to y as it can be made, or, in other words, the

sum of the squares of the residuals is a minimum. This is the con-

clusion of the next theorem.

Theorem S.S: Let y be any n by 1 vector and xI = A÷y,

where A is an n by p matrix. Then

and

I1_1 yll __I1_- yll

Ilxlll _<Ii _0 11

for any p-vector x,

for all x0 satisfying the above

inequality.

Proof: Let Y = Yl + Y2 with yl E R(A) and y2 E R(A) .

Then IIA_1 - y II = IIAA+Y- Y ii = Ily I y II = II yzlI. Onthe

other hand, for any p-vector x, let Ax = Y3" Certainly y3 ¢ R(A),

thus IIAx - Yll z = IlY3 - Yl - YzII z = ily 3 _ Yl IIZ + II Yz

The last equality follows since the vector Y3 - Yl is orthogonal to

Y2" Hence, the desired inequality follows. Any vector x0 satisfy-

ing flaxI - Yll _II Ax0 Yll is of the form xI + x2 where x2

is orthogonal to xI. Hence,

112.

Ilxoll -- Ilxll I + Ilxzll fromwhichweobtain Ilxll I < IIx011.
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Note that xI is not only the least squares solution, which may

not be unique, but also the vector of minimum norm which is a least

squares solution and thus xI is unique.
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5.2 Distribution Theory:

joint

vector m and covariance matrix V,

m 2
In this, if V = I, then y = g xi

i=l

If x is a column vector of n random variables which have a

n-dimensional Gauss_an (or normal) distribution with mean

we denote it as x _ N(m, V).

T

= x x has a known distri-

bution, called the noncentral chi-square, and this is written as

?
Y_x'(n, _, where the so-called noncentrality parameter X = 1/2mTm.

If X = 0, the noncentral chi-square is the central chi-square.

Theorem 5.6: Let the p x 1 random vector x_ N(0, V), where

r(V) = k _ p. A necessary and sufficient condition that a qua-

dratic form xTAx has a X2 distribution is that V is a pseudo

inverse of A by definition (2.4).

Proof:

in any case

matrix and

Consider the transformation y --Cx.

with mean zero and covariance matrix

transforms to zTFy where F = cTAc.

The result is well known when V is nonsingular.

V can be written as V = CDC T, where C is an orthogonal

D is a diagonal matrix with non-negative elements.

Then y is normally distributed

D. The quadratic form X PX

In terms of the new variables

in y, which are independently distributed, the condition that

?
yTFy has a x'-distribution is obviously FDF = F. Writing in terms

of A and C, we have

cTAcDcTAc = cTAvAC = CTAC .
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The last equality implies that AVA = A, which proves

the desired result. The x2-distribution has degrees of freedom

equal to the rank of VA.

Consider the particular quadratic form xTvx where

V- = CD -CT and D- is obtained from

zero elements by their reciprocals.

Theorem 5.6, we find

D by replacing the non-

Applying the test of

V-W- = CD-cTcDcTcD-cT = CD-C T = V- .

Hence, xTv-x has a x2-distribution with degrees of free-

dom equal to k, the rank of V.

Since A+ = A if A is idempotent and symmetric, and

A+ = AT if A is idempotent but not syrmnetric, no attempt is

made to extend the theory of the distribution of quadratic forms

of normal random vectors. An adequate and thorough expose' of this

topic can be found in Graybill [48].

We now proceed to establish fonmalas for the conditional

means and covariances which are valid even when the joint distri-

bution is singular.

Theorem 5.7:

random vector with

Let be a partitioned zero mean normal

S = cov x2 BT C '
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coy (x 1) = A, and coy (x2} = C, then the expected value of Xl,

given that x 2 = b and the covariance matrix of x i, given that x 2 = b

are given by:

and

E(XllX 2 = b) = BC+b

coy (XllX 2 = b) = A - BC+BT

Proof: We will derive the fornmlas for the conditional mean

and covariance of Xl, given that x2 = b, by representing xI in such

a way that it is obvious what conditioning on x2 means. We need

only the rule for computing covariances under a linear transformation,

i.e., if y has covariance matrix S, then My has covariance matrix

+

MSM T. Let y = xI - BC x2. Then the elements of the random vector

y have zero means, and the covariance matrix of the composite vector

I - BC+

0 I

is

[i o]-C+BT I

A - BC+B T B - BC+C
BT CC+B T C

To establish that the off-diagonal blocks are 0, the
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general covariance matrix V is positive semidefinite.

there exist a matrix P such that

4

- i

V -- I (plP2) =I

-j

Hence,

V-- pTp. Partitioning, we get

PTP 1 PTP 2

and the colunm space of pl T2P1 lies in the column space of P

which is the same as the colurm space of PTP 2 . Hence, without

loss of generality we have that the columns of BT lie in the column

space of C. But, in that case CC+B T -- BT since CC+ is the

projector of the column space of C. Hence, BT - CC+BT = 0 implies

that B - BC+C -- 0. Thus the covariance matrix becomes

COY y][ABc+BTx2o c°]
Hence the covariance matrix of y is A - BC+B T, and y is

independent of x2. Because of this independence, it follows in_nediate-

+
ly that the conditional distribution of xI = y + BC x2, given that

x2 = b, is normal with mean BC+b and covariance that of y.

It should be noted that these formulas for conditional mean

and covariance apply not only for the normal, but for any joint dis-

tribution for which zero correlation implies statistical independence.
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5.3. Incidence Matrices :

In this section, the properties of the Penrose pseudo inverse

of an arbitrary incidence matrix are examined in connection with the

properties of the network flows in the corresponding directed graph

and a simplified computational method for the pseudo inverse of an

arbitrary incidence matrix is developed o

We begin by defining several terms:

By an incidence m trix, we shall mean a matrix which has

exactly two nonzero entries that are 1 and -1 in each column of

the matrix and has no zero rows°

Any two rows of an incidence matrix are said to be directly

connected with each other if there is a column which has nonzero

entries in both rows. Any two rows, i and j, of an incidence

matrix are said to be indirectly, connected with each other if there is

th
a sequence of rows which starts with the 1 row and ends with the

row, (i, kl, k2, . o., kl, j), in which every two adjacent rows in

the sequence are directly connected° Any two rows of an incidence

matrix are said to be connected if they are directly or indirectly

connected.

A connected component of an incidence matrix is a sub-

matrix which consists of a set composed of rows_ each pair of which

are connected and none of which are connected with any other rows not

in the set, and a set composed of all the columns which have nonzero

entries in the rows in the set.

An incedence matrix is said to be a connected incidence matrix

if it has only one connected component; otherwise it is said to be a

.th
3
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separable incidence matrix. Then, by definition, a separable inci-

dence matrix can be brought it, to the following form by suitable row

and column interchanges ;

m _._

m

T 1

T 2

o Tk

where T i, i = 1, 2, . .., k, is the matrix of the

component.

i th connected

Len_na 5.2: If A is an m x n matrix of the form

A

A1

A2

0 Ak

where Ai,

k

r. n. =n,
i=l 1

by

i = i, 2, . .., k, is an mi x ni matrix and

k

X m. =m,
i=l 1

then the pseudo inverse of A is the n x m matrix given

A+

÷

A1

0

+

A2

0

4
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where A: is the pseudo inverse of Ai, i = I, ], . .., i.

Proof: Let

^

A

0

÷

A2

0

Then we can easily verify that Penrose's four equations,

AAA -- A,

AAA -- A,

^

^ Ck )*

are all satisfied. Therefore, A satisfies all the conditions re-

quired for the pseudo inverse of A and by the uniqueness property

of the pseudo inverse,

-- A+.

In the following discussion, we shall deal with only a connected

incidence matrix, since the pseudo inverse of a separable incidence

matrix can be derived by adjoining a set of the pseudo inverse of its

connected components as sho_,_ in the above lemma and by making necessary

row and column interchanges. This follows since for permutation matrices

PI and P2' (PIAP2)+ = PIA+P2"
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Theorem S.8: For any connected m x n incidence matrix T,

I - ]7+ : 1 E (i)
m '

where I is the m x m identity matrix and E is the m x m matrix

whose elements are all equal to i.

Proof: By the property of the pseudo inverse,

TF+T = T (2)

hence

(I - TT+T) : 0 (3)

This implies that if the kth column of T has 1 in the ith row

and -i in the jth row, then the elements of I - Tr+ for columns

i and j must be the same. Since T is connected, all columns

of I - TT+ are identical, and also since I - TT+ is syn_etrical

by the property of the pseudo inverse (i.e., TT+ = (TF+)*), all

rows of I TT+ are identical. Hence, the elements in I - TT +

are all identical. However, since I TT + is idempotent, i.ec.,

(I - TT+) 2 -- I - 17 + - (17 + - IT+IT +) -- I - IT +, (4)

all elements in I - TT+ are equal to i/m.

Lemma 5.3: Let T+ be the pseudo inverse of an m x n con-

nected incidence matrix T and let e be the m-component column
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vector whose elements are equal to 1. Then

T+e -- 0 . {s)

Proof: Since by definition

eT = 0 C6)

the lenmm follows from P28 in chapter 3.

Theorem 5.9: An m x n connected incidence matrix T contains

at least one linearly independent set of m - 1 colunms by which any

column of T can be expressed uniquely as a linear combination of the

columns in the set°

Such a set is called a basis of T.

Proof: Choose an arbitrary row, R0, in T. Let R1 be

the set of all rows which are directly connected with the row R0;

RI be the nonempty set of all rows not in _URIU . . . URi_ I which

are directly connected with at least one of the rows in Ri_ I. Since

T is connected and Ri Rj = @ if i _ j, every row in T belongs

to one and only one of RO, R1, • •., Rk, I <_-k <__m - 1. Choose

one column for every row in Ri which connects the row with any

one of the rows in Ri.l, and let Ci be the set of such colu_ms.

Then the number of columns in Ci is equal to the number of rows in

Ri and Ci Cj = @ if i @ j, hence the set C = CIUC2U . • • UCk

consists of m - i colu_ms.

Then every row is connected with the row ND by columns in C,

hence every row is connected with every other row by columns in C.
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Thus for any two rows in T, say the r_h row and the r_h row,

there exists a sequence of colunms in C, (Cl, c2, . .., Ck_l),

th
where cI = £ = l, 2, • •., _-l, directly connects the r i row

th
and the rl+ 1 row. (We shall assume that in the sequence of rows

(rl, r2, . .., rk) no two columns are identical.)

colunm of T, denoted by cj,

-I in the r_h row, then cj

has 1 in both the

is expressed as

.th
If the j

th
rI row and

C°

3 6=1

where the plus sign is taken if c£ has

and the minus sign is taken if c£ has

k-i

: ÷ (+_ct) ,

th
1 in the r£ row

-1 in the r_h row. Such

(7)

a sum with signs being adjusted according to the directions of arcs

will be called a sign-adjusted sum.

Furthermore, every row in Ri has only one colunm in C1 UC2U

• . UCi, i = i, 2, . .., k, which has a nonzero element in the

row. IIence, if a linear combination of columns in C is equal to the

zero vector, the coefficients in the linear combination for the

columns in Ck must be all equal to zero• This implies that the

coefficients for the cohmms in Ck_ 1 must also be all equal to

zero, which in turn implies that the coefficients for the cohmms

in Ck_ 2 nmst also be all equal to zero, and so on. Thus, every

coefficient must be equal to zero in order to have a linear combina-

tion of columns in C equal to the zero vector, hence C is linearly

independent. Therefore, any cohmm of T can be expressed uniquely

as a linear combination of columns in C.
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Using the above theorems, we derive a method of calculating T÷ as

follows. Without loss of generality, let us assume that the first

m - 1 cohmms of T form a basis and let T be partitioned into

[U: V], where U is an m x (n - m + i) matrix whose columns are

not in the basis. Also let T+ be partitioned into U , where

is an (m - i) x m matrix which consists of the first m - 1 rows

of T+ and V is an (n - m + i) x m matrix which consists of the

remaining rows of T+ in the sense that U is linearly independent

and any row in V can be expressed uniquely as a linear combination

of the rows in U (P28).

Let D be the (m - 1 x (n - m ÷ I) matrix such that

v = VD, (8)

and let D be the transpose of D. Also let M be the m x m

matrix which has (m - i)/ m for every diagonal element and -i/m

for every off-diagonal element. Then by Theorems 5.8 and (P28)

_^ _ ^

M = TT+ = UU + VV = UU + UDD U = U(I + DD )U. (9)

This implies that for any j and j,

Ui(l + DD )Uj = Mij,
(10)

where U. is the matrix U with the ith row deleted, U. is the
I j

matrix U with the jth column deleted, and Mij is the matrix M

with the ith row and the jth colunm deleted, i = I, 2, . .., m;

j = i, 2, . . ., m.
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Since the columns of the m x (m - i) matrix U are linearly

independent and any row of U can be expressed uniquely as the

negative of the sum of the rest of the rows in U, the rank of the

(m - i) x (m - I) matrix Ui is m - i, i.e., Ui is nonsingular,
,

for any i - l, 2, . .., m. Also I + DD is positive definite

and hence nonsingular. Thus, the ordinary inverse of Ui(I ÷ DD )

exists and U. is uniquely determined by
J

* -1Mi jUj -- [_(I + DD)] . (11)

The rest of the elements in T+ can be derived as linear combinations

of the elements in U. by (P28) and Lenma 5.3.
3

consider the following incidence matrix T:

As an example,

W

1 0 1

-1 1 0 1

0 -1 -1 0

t {e re,

U

1

-1

0

1 and

-1
m

D illI
We arbitrarily set

B

i = 3 and j = 3 for U.
1

and U.. Then
3

-1 z/3

,-1/3

-1/3-

2/3
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-1

_I 1

213 -113

-1/3 z/3
m

-3/15 -3/1S

4/15

By (P28) and lenmm 5.3, we produce T+

T+ = 1/15

3 -3 0

1 4 -5

4 1 -5

,-3 3 0

as follows:

The following properties of the pseudo inverse of an inci-

dence matrix may be derived from the above analysis.

First, we define the corresponding directed graph of a connected

incidence matrix as a graph ,_'hose vertices and arcs have one-to-one

correspondence with rows and columns, respectively, of the incidence

•th . th
matrix and each arc is directed from the 1 vertex toward the 3

•th
vertex if the corresponding column of the matrix has 1 in the 1

row and -1 in the jth row. The corresponding graph of the in-

cidence matrix in the above example is shown in Fig. 1.

FIC. i
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If x is an n-component column vector which represents

quantities or flows through n arcs in the graph, Tx represents

the amount of the net inflow (or outflow if negative) to be made at

each one of the m vertices. Since by Theorem 5.8,

Tr + : I - i/m E, (12)

where E is the m x m matrix whose elements are all equal to 1,

the elements in the ith column of T+ represent a set of quantities

which flow through the n arcs when one unit of inflow is made at

the i th vertex and 1/m units of outflow is made at each one of the

m vertices.

!Iowever, the qumltities in the i th colurm of T + have an

additional property. &s brought out Lu the proof of Tb.eorem 5.9.

any column of T is expressible uniquely as the sign-adjusted sum of

columns in a basis, and, by (P28), the corresponding row of T+ is

also expressible uniquely by the same sign-adjusted sum of the

corresponding rows in the basis of T+. IIence, the flow quantity

in the jth arc is equal to the sign-adjusted sum of the flow

quantities in a sequence of basis arcs (i.e., arcs whose corres-

ponding columns are in the basis) which connect the same two ver-

tices as the j th arc does. This further implies that the sign-

adjusted sum of the flow quantities in any sequence of arcs which

connect a pair of vertices is 5dentical for any given pair of vertices.

This is equivalent to saying that the sign-adjusted sum of the flow

quantities in the arcs in any loop is equal to zero, where a loop

is a sequence of arcs which starts and ends with the same vertex, and

every pair of adjacent arcs in the sequence have a common vertex.
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Thus, the elements in the j th row and the i th column of T+

are equal to the quantity which flows through the j th arc (in the

direction of the arc) if the flows in the graph are made in such a

way that the following two conditions are satisfied.

±

)
,/

FIG. 2

Condition i. One unit of inflow is made at the

and i/m units of outflow are made at each one of the

.th
1 vertex

m vertices.

Condition 2. For every pair of vertices the sign-adjusted

sum of the flmq quantities in a sec_ence of arcs which connect the two

vertices is identical for any such sequences.

The two conditions uniquely determine the elements in T+ for

any given directed graph in which the correspondence between rows of

T+ and arcs of the graph and the correspondence between columns of

T+ and vertices of the graph are fixed. To show this, let T be
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partitioned into [U: V] as before, and let D be the matrix such

^

that V = UD. Suppose that two n x m matrices S and _ both

satisfy the above two conditions. Then, by Condition i,

= o. (13)

Let the matrix S - S be partitioned into where 0 is an
V

(m - 1 x m matrix which corresponds to basis arcs and 9 is an

(n - m + 1) x m matrix which corresponds to nonbasis arcs. Then,

by Condition 2,

V = DU,

where D is the transpose of D. Ilence,

(S _ ,_ , _T - S) = UU + UDD U -- U(I + DD )U = 0

(14)

(iS)

Ibwever, since the cohmns of U are linearly independent and the

,

matrix I + DD is nonsingular, as shown earlier, this implies that

every element in 0 is zero. Hence, the matrix which satisfies

the two conditions for a given graph is unique.

Fig. 2 is prepared from the first column of T+ in the above

example.

The pseudo inverse of an arbitrary matrix possesses two

types of least square properties, i.e., x = A+y has the minimum

norm, among all x's which minimize fly - Axll. In our analysis

of the pseudo inverse of a connected incidence matrix, this means

that
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(i) for any given y, flY - Txll _ fly - TF+Y]I for all x, and

(ii) among all x's which satisfy I Iy - Txl] = I Iy - 'rT+yl ], x = T+y

has the minimum norm where I lxll : (x'x) 1/z •

We shall show that the two conditions above can also be derived

from these two types of least square properties of the pseudo inverses

of connected incidence matrices. First, if (i) holds, Condition 1 must

hold. For e Tx = e TT+y = 0 for any x and y, and among all vectors

e

z = y - Tx whose elements add to the given constant e y, the vector

whose elements are all equal to (I/m)e y has the minimum norm, and

by setting y equal to a unit vector Condition 1 follows.

If (ii) holds, Condition 2 must also hold. To show this, let T

be partitioned into [U:UD] as before. Let x be an n-component

x1
column vector of flow quantities and let it be partitioned into

x2 '

where xI is an (m - I) -component column vector of flow

quantities for basis arcs, and x2 is an (n - m + i) -component

column vector of flow quantities for nonbasis arcs. Since Condition

1 is satisfied, we must have for any given y,

Tx = UxI + UDx 2 = y - e__y_ e. (16)m

Since the columns of U are linearly independent, this implies that

xI + Dx 2 = z (17)

where z is a given vector such that

= y - e Y e .
m

Uz (18)
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Let

L-- x I x I + x 2 x 2 - _ (x I + Dx 2 - z), (19)

where _ is an (m - 1) -component coltmm vector of Lagrange

multipliers. Since I lxll is minimum, we must have

_L

-_1 2Xl _ = o (2o)

hence,

_x2 2x 2 -D _ = 0 , (21)

x 2 = D xI ; (22)

thus Condition 2 is satisfied.

The reader is referred to Berge [i0] and Charnes and Cooper [20]

for discussions on incidence matrices, graphs and their applications.

See also Charnes, cooper, DeVoe and Learner [21] which is an interesting

application of the pseudo inverse of an incidence matrix. The ex-

plicit form of the pseudo inverse of the distribution or transportation

or dyadic matrix was first developed by A. Charnes, G. G. den Broeder,

Jr., and R. E. Cline in 1956. (See, for example [Cline Ph.D. diss.]).



181

5.4. Stochastic Matrices

In this section we give an application of the Scroggs-Odell pseudo

inverse to stochastic matrices where the spectral property inherited by

the Scroggs-Odell pseudo inverse plays a very important role•

Let A be a stochastic matrix, i•e•, A 0 and aj = j, where
!

j = (1, 1, . .., 1) . Amatrix A is said to be reducible if and only

if there is a permutation matrix P such that

PAP

where B and D are square matrices• Otherwise the matrix A is called

irreducible. For any reducible matrix there is a permutation matrix P

such that

PAP 0 . . 0 0 . . . 0

0 _ 0 0 . . . 0

oe•eee•e••ee••e•eo•••e e••

0 0 Ak 0 • • • 0

Ak+l, 1 Ak+l, 2 Ak+l, k Ak+ 1 • . . 0

• • • • • • • • • • • • • • • • • • • • • • • • •

Anl %2 • • • hnk  ,k+l • • %

where the Ai, i = i, 2, . .., n are irreducible. We say that A is

completely reducible if and only if there is a permutation matrix P

such that

PAP = diag (A1, A2, . .., An)
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Theorem S.IO. Let A be a stochastic matrix. The necessary and

sufficient conditions that A+ be stochastic are that A be either

completely reducible or irreducible and every non-zero eigenvalue of A

lie on the unit circle.

Proof: We consider the necessity of the conditions. It is well

known that the eigenvalues of a stochastic matrix lie in the closed

unit disc. Consequently, it follows from Chapter 4, Theorem S that if

A+ is stochastic, then all non-zero eigenvalues of A (and A+) must

lie on the unit circle in the complex plane.

Let A be reducible. Then there exists a permutation matrix P

such that

A = PAP,

where A has the form (5.23). Since P is a permutation matrix PP = I.
^

Thus A and A are similar and, hence, have the same eigenvalues. Due

^

to the triangular form of A, the eigenvalues of A are precisely those

of all of the Ai, i = i, 2, . .., n. Suppose that there is an i

greater than k such that not all of the All, Ai2, • •., Ai,i_ 1 are

zero. But in this case, the spectral radius of A. is less than the
x

spectral radius of A. Thus the eigenvalues of A. are in modulus
x

less than i. This is a contradiction. IIence A is completely reducible.

Thus, the proof of the necessity is concluded.

2he foll_qing lemma will be needed in the proof of the sufficiency.

[emma 5.4: If A is stochastic, irreducible and has all of its

non-zere eigenvalues on the unit circle, then the elementary divisor of

A corresponding to zero is at most of first degree.
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Proof of the Lenmm. It follows from a well kno_m redult due to

Frobenius, that the mininalm equation for A is of the form xp (xh - I) --

0. Factoring the polynomial in this equation,

xp (x h - 1) = (x- 1) (x p+h-1 + x p+h-2 + . . . x p) (1)

Thus

(A- I) (Ap+h-1 + Ap+h-2 + . . . + Ap = 0 (2)

Now a Jordan form for A is

C 1 0 0

0 _1 0

0 0 "2

o.,ooQo*o

0 0 0

0 0 0

,,° 0

• . . 0 0

• . . 0 0

-•oeoooo

• " " _-I 0

• . . 0 N

0

where mi' i : i, 2, . .., h - i, are the h-th roots of unity

different from 1 and N is a p by p matrix whose elements are

all zero except for the diagonal above the principal diagonal. The

first p - 1 elements in the diagonal above the principal diagonal

are l's and the other elements are zero. Then

AP+h-1 + AP+h-2 + . . . + Ap : p(cP+h-2 + . . . + cp ) p-1

P (diag (h, 0, 0, . . . 0)) p-1 (3)
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Thus the i-th row of the sum of the matrices on the left in (3) is

hPilPl -I, where P1 -I is the first row of p-l. But each matrix

in the sum on the left in (3) is a stochastic matrix. Hence the sum

of the elements in a given row of the sum is h. Now the first column

of P is an eigenvector of A corresponding to i. Hence we may

take Pil : I, for

of the first row of

i : i, 2, . .., n. Thus the sum of the elements

p-I is i. Now if p > i, consider the sum

AP+h-2 + Ap+h-3 + • • • + Ap-I : PDP -I , (4)

where dll = h, dh+l,h+ p 1 and all other elements of D are zero.

p-i
Then the i-th row of PDP -I is hPilPl-I + Pi,h+l h+p " The sunmmnds

on the left in (4) are each stochastic. Thus the sum of each row of

PDP -I must be h. But Pi,h+l is not zero for at least one value of

i between 1 and n and the row p-i is not identically zero.
h+p

Thus we have contradicted the fact that the sum of the elements of

-I
Pl is I. Hence p _<I.

Returning to the proof of the sufficiency portion of Theorem 5.10,

suppose that A is completely reducible and all of the non-zero

eigenvalues of A lie on the unit circle. Then there is a permutation

matrix p such that PAP = diag CAI, A2, . .., Ag). Since each

of the A i is irreducible and the nonzero eigenvalues of each of the

A i lie on the unit circle, the non-zero eigen values of Ai are

precisely the hi-th roots of unity. Thus it follows that the minimum

polynomial for A is of the form xP(x k - i), where i = l.c.m.
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(hl,h 2, . .., hg). From the lenmm, either p = 0 or p --i. If

p = 0, then A is non-singular and A+ = A-I = Ak-l. If p = I,

then A is singular and A+ = Ak-I In either case A+ is

stochastic.
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5.5. A Generalization of the Gauss-Markov Theorem

Consider the linear model

y = HX + e

where y is a real p by i vector of observations, x is a real

unknown n by 1 state vector, e is a real p by 1 random error

vector, and H is a p by n known real matrix. Also E(E) = # and

E(ee T) = V where E denotes the expected value operation, _ denotes

the null matrix (or vector), and V is a known real synmmtric positive

definite matrix.

^

We seek a linear, minimum variance, unbiased estimate x of x.

That is, we are to find a matrix B such that x = By, E(x) = x, and

V = E[(x - x) (x - x) T] is minimum in the sense that if z is any

linear unbiased estimate of x, then qT[v z - V_] q > 0 for any p by 1

vector q _ 0. Vz is the corresponding covariance matrix of z,

which is a real syn_netric positive definite matrix. These conditions

imply that E(x) = BHx = x so that BH = I, where I is the n x n

identity.

A

If the rank of H is p < n, we cannot require that E(x) = x,

since, in this case H has no left inverse. We can, however, modify

this requirement by requiring that the norm liE(x) - xll be minimum.

The properties remain unchanged for complex matrices if we replace

transpose by conjugate transpose.

To facilitate reading, we list some properties of the Penrose

pseudoinverse used in obtaining this result°
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m)

P2)

p3)

For every matrix A there exists a unique matrix A÷ such

that AA+A = A

F_ ÷ __ A÷

(A+A)T _- A+A

CAA÷)T = _÷.

We call A+ the Penrose pseudo-inverse of A.

÷

(AC)÷ = C1÷ A1 where AC --AICI, C1 = A+AC, and A1 =

ACICI +

(A+)T = CAT)+

P4) All solutions of the matrix equation AXB = C are given by

x = A+CB ÷ + Y - A+Ay BB÷ if and only if AA+CB+B = C

where Y has the dimension of X.

PS)
÷

Range of AT equals the range of A , that is

R(A T) = R(A+). A+A and AA+ are, respectively, the

projection operators on the range spaces of A÷ and A.

P6) For any n x n matrix A and vector, z, z = zI + z2

ZleR(A+), z2eN(A), and xI is orthogonal to z2.

We are now ready to establish a generalization of the Gauss-Markov theorem.

Theorem 5.ii:

equation

Consider the linear model described by the vector

Y
pxl

= H x + e

pxm mxl pxl
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where E(e) = O and E{ee T) = V is positive definite. The mininlam

mean-square-error linear estimate x of x is given by:

^

x = M+HTV-ly

with

where

M = HTv-IH .

^

Proof: We require that x = By and E(x) = x whenever xcR(HT).

These requirements imply that E(x) = BHx and (PS) implies that

for x in R(HT),

H+Hx = BHx = x.

Let x = x 1 + x 2 where XlER(HT) , x2¢N(H). Then

IIE(_:) - xll -- IIB._l -,- BHx2 - xll -- IIBHx2 - x211 -- IIx211

It follows that IIEcx) - xll is minimum for xMR(ttT). The covariance

^

matrix %_ of the estimate x is given by V_ : BVBT and must be

minimized subject to the constraint (_t = H+H. To do this we adjoin

the constraint BH = H+H to BVBT using a matrix Lagrange multiplier

A and find conditions necessary to minimize

Q = BVBT + AT [H+H -HTB T] + [H+H- BH] A.

Employing the variational technique [38] we obtain the first variation 6Q,

6Q = 6B [VBT -HA] + [BV- AT HT] 6B T.



Since _B is arbitrary, we find that setting 6Q = ¢ implies

BV- ATHT = ¢

or

B - ATH_v-1.

Multiplying the latter by H we obtain

H+H: FHTv-IH

SO that using (P3) and setting HTv-IH = M we have

XT H+HM += + y [I _4 +] = M+ + y (I N_4+)

where y is arbitrary to within having the dimension of AT.

Assume that the rank of H is q < min (n, p). Then

B : ATv-I

= {M+ + y [I - _4+]} HTv -1

We need to establish a workable form for M+. To do this apply (Pl)

with A = HTv -1 and C = H. We get

C1 = (HTv -1)+ HTv -1H

A1 = HTv -1 0tTv -1 (HTv'I) + HTv-1H [(HTv-1) + HTv'IH] +

__ HTv-IH[(HTv-1)÷ nWv-lH]÷

Hence

M+ = [(HTv-1) + ttTv-1H] + [HTv-1H {(HTv-1) + HTv-IH}+] +

189
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Therefore

B = {M+ + y [I -M_+]}HTv -1

= M+HTv -1 + y [I - HTv-1H [(HTv-1) + HTv-1H] +

HTv-1H {(HTv-1)+ HTv-1H}+]+ HTv -1.

I

To establish the second term is ¢, i.e. [I - I_i+] HTv -I = ¢.

We need MM+ HTv -1 = HTv -1. Since [I - MM+] is an orthogonal pro-

jection on the null space of M+, we need to show that N(M +) = N(H).

Since M = HTv-IH, then it certainly follows that n(N0 = N(MT).

Also note that N(M) = N(H). Thus suppose there exists an xEN(M)

such that x_N(H). Since V "I is positive definite, V -I does

not rotate Hx into the null space of HT. Hence HTv -I Hx # 0

which implies x_N(M). This is a contradiction. Thus N(M) = N(H).

Now N(M) = NCM T) = NCM +) which implies N(M +) = N(H) and

consequently (I MH+) HTv -I= ¢ since R(H T) = N(Ht. Hence

^ M+Xvx = By = H -ly

with covariance matrix

V_( = BvBT = M+HTv -!HM+T

= M+IVIvI+T = M+.

^

There are two special cases where the formulas for x and V_ reduce

very nicely.



Case i: Rank H = n < p. In this case H+H = I. Thus

-- M÷HTv-Iy

= M-IHTv-Iy

= (HTv -1H)-1 HTv -ly .

and

Case 2 :

= (HTv -1H) -1 HTv-1 H (HTv -IH) -1

= (HTv- 1H) -1

_ HH+Rank H = p < n. In this case = I and substituting into

Hence

Thus

M+ = [vHT+HTV-IH] + [HTv-II-!{vHT+HTv-IH}+] +

= H+ (HTv-IHH +)+

= H+ (HTv-1)+

= H+VHT+ .

^

X __M÷HTv-Iy

_ H+VI_IT+HTV-1Y

+

-- Hy,

191

the four defining equations establishes that

(HTv-I)+ = VIIT÷
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and

Vx = H+VH +T "

It is of interest to compare the least squares estimate of the

state vector to that of the minimum variance estimate of the state

vector. Hagness and HcGuire [63] have been able to give an extensive

anlaysis in comparing these two estimates whenever the regression

matrix of the linear model is of full-rank (columns linearly inde-

pendent). They were able to establish the inequality

1 1VLS _ (_max + _min ) (_nax + _ ) VHV

where VLS and VHV are the covariance matrices of the least squares

estimate and minimum variance estimate, respectively. _max and _min

are the maximum and minimum eigenvalues of the correlation matrix p

of the error vector. The above inequality places an upper bound on how

much is lost by use of the least squares estimate of the state vector

to that of the minimum variance estimate of the state vector.

In the following theorem it will be shown that the least-squares

estimate of the state vector will have the same covariance matrix as

that of the mean-square-error estimate of the state vector, whenever

the regression matrix of the linear model has all of its rows linearly

independent.

Theorem 5.12:

equation

Consider the linear model described by the vector

y = H x + e
pxl pxn nxl pxl
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where E{e) = ¢, E{ee T) = V is positive definite, and R{H) = p.

Then the covariance matrix of the least-squares estimate of the state

vector equals the covariauce matrix of the mean=square=error estimate

of the state vector.

Proof: The least squares estimate of the state vector is

xLS -- (HTH)+ HT y

= H+y.

The corresponding covariance matrix is

VLS = H+VHT+.

The mean-square-error estimate of the state vector is by Theorem 5.11,

Case 2,

^ +

x = Hy

The corresponding covariance matrix is

V = H+VHT+ .

Thus it can be seen there is no loss in using the least squares estimate

whenever the rows of the regression matrix are linearly independent.
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5.6 An Application of a_ Pseudoinverse to Testing }_pothesis

Consider the matrix A which is n x p. Let A- be a p x n

matrix satisfying the following equations:

AA-A = A

A-AA- = A-

-)T(AA = AA.

A- will be called a pseudo inverse of A. The above equations imply

that the null space of A- is the orthogonal complement of the range

of A, and AA- is an orthogonal projection operator on the range of A.

We will use a matrix with the above properties to establish a general

method for testing a hypothesis about a linear model.

We shall consider the linear model

y = Hx+V

where y is a real n x 1 vector of observations, x is a real un-

known r x 1 state vector, V is a real n x 1 random error vector,

and H is an n x r known real matrix. In addition V is distributed

N(0, aZI).

Let _ be the p-dimensional vector space spanned by the columns

of H. Assume VcR, and that to is a q-dimensional subspace of

spanned by the colu,_s of H1.

We wish to test the following hypothesis:

HO: E(y) e to ; i.e., Hla = n
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We define the likelihood-ratio statistic _ to be:

X = max p(y) / max p(y), where p(y) is

the probability density function of y. The likelihood-ratio test

consists in rejecting H0 if X > X2' where x2 was chosen such that

the Pr(X > X2) _ a. Since y is distributed N(Hx, a2I) it has been

shown that

max P(y) = (2.11 y - ull )-n/2 e - _rff

^ _1
max P(y) = (2_rll y - _ )-n/2 e 2"ff

w

where

^ & ^ Tyu = and x satisfies } = H (i)

^ ^ ^ TH H1n = Hla and a satisfies HI i_ = Ty (2)

But, since HTHH - = HT and N(A-) = R(A)_ it follows that equations

(1) and (2) have a solution given by

^

X = H-y

A

a = HIY.

Hence, _ can be written as

x -- [
I ly - Hlal Iz n/2

]
^

I ly - H xl Iz
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We now define the statistic F to be

F(A) = n-p (_Z/n 0 1).
p-q

Since F(A) is a single-valued everywhere increasing function of X,

the A-test is equivalent to rejecting H 0 if and only if F > F(X0),

where F(_) is chosen such that Pr{F > F(_)} <__a. We will now

show that F is the central F if and only if H0 is true. Now

I ly - HI_I 12
F = n-p [ ^ 2_11

P-q IlY- Hxll

or

F = n-p [ I ly - Hl=l Iz - I ly - _112• 1

P-q IIY _11 z

We will rewrite

which gives

^ . _ (}tH-)T -
F using the fact that x = H-y, a = H ly, = HH

HI_)T ^I ly - HI_] Iz = (Y - (Y - HI=)"

We have

I ly - H1;[I 2 -_ (y _ HIHi y)T (y _ HIHi y)

g -T T -
= fly- Ttt{TttlT- fiHttt{y + y tt1 "iH1H1 y

= - "l"{ly.
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Likewise

Ily - H_II 2 = yT [I - HH- ]y.

Therefore

I lY - Hl_I[2 ]IY - _l ]2 = yT [HH- - H1H i ]y,

so that

F = nlP_ [ yT[I__I- - H1H 1 ]y ]

P-q yT[I - HH-]y

We will now show that HH- - HIH- and I - HH- are sy_netric and

idempotent. To do this we use the facts that (HH-)T = HH- and

HHHH = HH.

(_-_HIHi)T: _- _HIHi

(I - HH-) T = I - HH-

(_- HIH_)(_- HIHi) = _- _HIH_-

= HIH1-HH- = HIH1-. To do this letWe now show that HH-HIH I-

Z = ZI + Z2 + Z5 where

ZICR

"-"i"i +"i"i •

Z2cm

Z3¢_ with respect to Jq

(HIHI-HH-) Z = HIH 1 (Z2 + Z3) = Z2

(HH-HIHI-) Z = H-Z 2 = Z2
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Now

%% zz -- zz.

Thus

I-E4-HIHI- + HIHI-HH" = 2HIH 1 •

Hence

Also

(HH- - HIHI- ) (HH- - HIHI- ) = HH- HIH 1 •

[I - HI-I-] [I - HI-I-] = I - HH- - HH- + HH-HH- = I - HH- ,

and

[HH- - HIHI- ] [I - HH-] = }_I- - HIH 1 - }_q- + HIH 1 HH = 0 .

Hence, we have that yT[I - HH']y and yT[HH- - HIHI-]y are independently

distributed as X2(n - p, 61) and X2 (p - q, 62) , respectively, where

61 = [E(y)T [I -HI-I-] E(y)] = xTH T [I HH-] Hx

T [HTH HT(HH'H) ]x= X

= xT [HTH - HTH]x = 0,

and

\

62 = E(y) T [HH- - HIH 1 ] E(y) .

Hence
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yT [HH- - HIHI- ] y

T
y [I - HH-] y

is distributed as F(p - q, n - p, 62).

Now if H0 is true, E(y) = His = n so that

T [HH- HIH I ] n.62 = n

Since nc_, HH-n = n and HIH I n = n, therefore

62 = nT[n n] = 0. Suppose 62 = 0. Let E(y) = Z, where

Z = zI + Z2, ZlC_ , Z2¢_ . This implies that

T zzT) (HI-I--HIH 1 (ZI + Z2) = 0(ZI +

(zIT + z2T) (Z1 + Z2 Zl) = 0

(zIT + z2T ) Z2 = 0

zITZ 2 + z2Tz 2 = 0.

But ZlTZ 2 = 0, since Z1 is in the orthogonal complement of Z2.

Hence, z2Tz 2 = 0, so that Z2 = 0. We conclude that if

_2 = 0, E(y)¢_. We have thus established that H0 is true if and

only if 62 = 0. Hence F is the central F if and only if H0

is true.

It should be noted that the above test could be done with the

Penrose pseudoinverse. The more general pseudo inverse A was given

to indicate the possibility of defining a pseudo inverse and adapting

it to a particular situation.
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5.7 Application To Estimable Functions

Consider the linear model

real vector of observations, H

of rank q _min (n, p), X

real n by 1 error vector.

Y - HX + V where Y is an
n by 1

is an n by p known real matrix

is a p by i state vector, and V is a

Also let E(V) = ¢ and E(W T) = a2I.

Suppose it is desired to estimate the state vector by the method of

least-squares. Thus it becomes necessary to minimize vTv = (Y - HX) T

(Y - HX), which gives the normal equations (HTH)x = HTy. A simple

argument can be used to show that this system is consistent and thus

the general solution is X = H+ Y + (I- H+H)Z where Z is arbitrary.

This general solution implies that there are infinitely many solutions.

To the statistician this is undesirable for two researchers with the

same data, both using the same method of estimation, can draw different

conclusions. Also it can be seen from observing the general solution

that no unbiased estimate of X exists unless H is of rank p which

is also undesirable°

It would seem natural to investigate whether there exists an

unbiased estimate of any linear combinations of the elements of X.

Before proceeding further we shall formulate two useful definitions.

Definition 5.1: A parameter is said to be estimable if there exists

an unbiased estimate of the parameter.

Definition 5.2: A parameter is said to be linearly estimable if there

exists a linear combination of the observations whose expected value

is equal to the parameter.
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Let A be a matrix such that A(I - H+H) -- _, then

H+HAT -- AT. Hence, the colums of AT belong to R(H+) and thus

AX = AH+Y + A(I H+H)Z = AH+Y which implies E(AX) = E(AH+Y) = AH+HX = /iX.

}h_nce, for any A such that A(I - H+H) = ¢, the parameter AX is an

estimable ftmctiono

Theorem 5.13: Let H be n by p of rank q _min (n, p), then

AX is estimable if and only if there exists a solution for r in the

equations

HTHr = aiT

where

A = (alT, a2T, o . o, aS) T.

Proof: Partition A such that each ai is a 1 by p row vector°

Suppose AX is estimable, then there exists a B such that E(BY) = AX

which implies BHX = AX for every Xo Hence it follows BH = A which

implies HTB T = AT . Thus the coltmms of AT belong to the cohmm

space of HT and consequently H+Hai T = aiTo The estimate of aiX

is aiH+Y. It is unbiased since

E(aiH+Y) = aiH+HX = aiX°

Now aiT _ R(H+), but R04 +) = R(HT), hence, there exists a vector z

such that

HTz = aiT .
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Hence, the rank of the matrix HT is equal to the rank of the

augmented matrix [HTlaiT]. Thus the rank of HTH equals the rank of

[HTH]ai T] which implies HTHr = aiT has a solution° Conversely, if

HTHr = aiT has a solution, we let b = Hr. Then

E(bTy) = E(rTHTy) rTHTHX = aiX = E(aiH+Y).

Hence, ai is a row of A if and only if there exist a solution for r

in the equations HTHr-- aiT, i = i, 2, . o 0, no

Theorem 5.14: Let H be n by p of rank q _<rain (n, p), then

the best linear unbiased estimate for any estimable function AX is AH+Y.

Proof: Assume that the best linear unbiased estimate of AX is

CY = (AH+ + B)Y. Now CY is completely general since B is general.

We must determine the matrix B such that

E(CY) = E [(AH+ + B)Y] = AH+HX + BHX

= AX+ BHX=AX.

Hence BH -- ¢. To show that B = ¢ we must minimize the variance of CY.

Cov(CY)= E[(CY - AX) (CY- AX) T]

= E[cyyTcT = AxyTc T _ cYxTA T + AxxTA T]

•, C(c2I + HxxTH T) CT _ AxxTHTc T O-{xxTA T + AxxTA T

= (AH+ + B) (_2I + HxxTH T) (AH+ + B) T - AxxTH T (AH+ + B) T

- (AH+ + B) HxxTA T + AxxTA T
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(AH+ + B} (PH+ + B)T

(AH+ H+TA T + BH+T + AH+B T + BBT).

Now BH = _ implies that HTB T = _ so that the cohmms of BT are in the

null space of HT which is the same as the null space of H+. Hence it

follows that H+B T = _. Thus

Cov (CY) = AH÷H+TA T + BBT.

Hence to minimize var (CY) we must minimize the diagonal elements of BB T.

But, they are all non-negative, hence to minimize the var(CY), we must

take B = @. Thus C = AH+ and AH+Y is the best linear unbiased

estimate of AX.

Definition 5.3: The estimable functions aiX , i = i, 2, . .., k are

said to be linearly independent estimable functions if the ai are

linearly independent.

Theorem 5.15: Let H be an n byp matrix of rank q < rain (n, p),

then there are exactly q linearly independent estimable functions.

T R(HT), which
Proof: aiX is estimable if and only if ai ¢

implies that ai[I - H+H] = 0. Also, by Theorem 3.I, aiX is estimable

if and only if there exist a solution for r in the equation HTHr = aiTo

Let rl, r2, . .., tt be such that HTHrl = alT, . .., HTHrt = arT.

Then

HTH (rl, r2, • .., rt) = (alT, a2T, . .., atT).
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T, T atT)But HTH is of rank q which implies that (aI a2 , . •., is

at most of rank q. But each aiT ¢ R(H T) so that each aiX is

estimable. But the rank of H+ is q which implies there are q

linearly independent aiT'so Hence, there are exactly q linearly

independent estimable functions°

Theorem 5o16: Let H be an n by p matrix of rank q _<min

(n, p)o Let AX be an estimable function where A is k by p of

rank q. If BX is an estimable function, then the rows of B are

linear bombination of the rows of Ao

Proof: This follows i_mediately from Theorem 5o15o

It is interesting to note that since the rows of H are

elements of R(HT) which implies the rows of H are elements of R(HT),

that HX is an estimable function° Also since BH is contained in the

row space of H, then BHX is an estimable function. In fact

AIA 2 . o o AnHX is an estimable function° Furthermore, it is obvious

that the best linear unbiased estimate of a linear combination of

estimable functions is given by the same linear combination of the best

linear unbiased estimates of the estimable functions.

Variance and Covariance of Estimable Functions

Theorem 5.17: If AIX and A2X are two estimable functions,

the respective covariances of the best linear unbiased estimates are

o2_H+H+TAI T and _2A2H+H+TA2T. The covariance of the estimates of

AIX and A2X is equal _AIH+H+TA2 T.
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Proof:

of the estimate of A1X is o2A1H+H÷TA1 T.

of the estimte of A2X is o2A2H+H÷TA2 T.

estimates of A1X and A2X is given by:

Coy [AIH+Y, AzH+Y] ....

= E [(AIH+Y - AIX) (A2H+Y - AzX)T]

From the proof of Theorem 5.14 we see that the covariance

Similarly the covariance

The covariance of the

AIH+HXxTA2 T +

A1xxTA2T + AIXXTA2T

= E [A1H÷yyTH÷TA2 T A1xyTx÷TA2 - A1H÷yxTA2 T + A1xxTA2T]

= A1H+ (o2I + HxxTHT)H+TA2 T - A1xxTHTH+TA2 T

A1xxTA2T

= o2A1H+H+TA2 T ÷ A1xxTA2 T - A1xxTA2T

= o2A1H÷H+TA2 T o

Theorem 5o18: Let Y -"HX ÷ V, where H is an n by p matrix

Of rank q _< rain (n, p) and V is distributed Nn(0, a21), then the

quantity

A2
(n - q) o = (Y -Hx)T (y _ I-IX)

is distributed as a chi-square variate with n - q degrees of freedomo

In symbols,

2
X (n- q, X= 0) o



206

Proof:

(Y - Hx)T (y _ HX) = (Y - HH+y}T (y . HH+Y)

_- yW (I = HH+) (I - _+)Y = yT (I - HH+)Yo

But (I - _q+) is idempotent and hence yT (I - HH+)Y is distributed

2 ½ xTH T 2X (n - q, x = (I - HH+) HX) = x (n - q, X = 0).

This section indicates that in the theory of estimation the

generalized inverse seems particularly applicable. It appears that

considerable simplification if not amplification of the theory can be

m_de using this tOOlo Also, it should be noted that separate analysis

is not needed to study the full-rank or less-than full-rank regression

model. In the case of the full-rank model all functions of the state

vector are estimable while the class of estimable functions is restricted

in the less than full-rank case° It is also of interest to observe that

it is always possible to reparameterize the linear model Y --HX + V

such that the new regression matrix is of full-rank. To be specific,

suppose the linear model is less than full-ranko Determine a maximal

set of linearly independent cohmms of the regression matrix H.

Suppose the maximal set contains k column vectors. Then use these

k coltmm vectors to be the first k coltm_s in the new regression

matrix. Also, the elements of the state vector X should be re-

arranged according to the rearrangement in the regression matrix Ho Hence

= HIH2X + V where H1 consist of the kone Can now write Y linearly

independent cohmms, H2 the remaining columns of H, and X the

rearranged elements of X° If one lets T --H2X, then T becomes an

estimable function°
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5.8. Sequential Least Squares Parameter Estimation

In this section a sequential algorithm for least squares

estimation of a parameter state vector is developed utilizing the

properties of the Penrose pseudo inverse. This algorithm allows the

estimation to begin after the first observation has been made and requires

no apriori knowledge of the initial state of the system° The problems

of weighted least squares, deleting a bad observation, and application

to a dynamical system are also considered° The problems associated

with singular matrices encountered in iterative least squares procedures

do not affect the algorithm°

Nonlinear parameter estimation problems are usually handled by

linear approximations of the actual parameter state in a neighborhood

of a nominal parameter state. The resulting equations are of the same

general form Ax = b; however, in this case x denotes the deviation

from the nominal state, and b denotes the deviation in "observe_'

and "computed" values°

The problem then is to find thesolution for x in the matrix

equation Ax = b, where A is an n by m matrix, x is an m by 1

parameter state vector, and b is an n by 1 observation vector. Since

this equation, in general, does not have a solution the normal form is

considered A+Ax = A b o It may be shown that this equation always has

a solution, in fact has infinitely many solutions when the matrix A A

is singular°
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A sequential method for computing the least squares estimate

after n + 1 observations have been made without having to begin

again from the beginning is especially desirable in real time operation°

This method allows one to move from the nth to the (n + I)st para-

meter state with a minimum of computations°

The problem of the matrix ATA becoming singular does not

affect this algorithm because the solution for x which

has minim_n Euclidean norm is chosen and the estimation procedure

continues on. At the time the matrix ATA becomes nonsingular this

method gives the same solution as the conventional method° One of the

best applications of this method is to the problem of orbit determina-

tion. In this case one operates in the mode of the deviation space

but basically the problem is the same°

There are in existence two well known procedures for attacking

this problem. One method, by P. A° Gainer (43) requires that enough

observations be made for the system to be fully determined before

the procedure begins, another, by R. Eo Kalman (56, 57) which requires

apriori knowledge of the covariance of the estimate. The method which

will be outlined does not require the system to be fully determined

before the estimation begins nor does it require any apriori knowledge

of the initial state of the system. It will be easily seen that this

method becomes the same as Kalman's after the system becomes fully

determined.

This section is divided into five major divisions. The first

division exhibits the sequential algorithm. The second examines the
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problem of weighting. The third exhibits the covariance matrix. The

fourth presents a method for deleting a bad observation° The fifth

demonstrates the application of the sequential algorithm to a

dynamical system.
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The Sequential Algorithm

Utilizing the properties of the Penrose pseudo inverse, an

algorithm is developed which allows one to move sequentially from

the nth to the (n + I)st parameter state with a minirmnnof

operations. This algorithm is not restricted to scalar observa-

tions but also allows vector valued observations.

Theorem 5.19: The pseudo inverse of any matrix,

A -- (U,V) (i)

where U and V are arbitrary partitions of the matrix A in

columns, can be written in the following form:

-U+ - U+VC+ - U+V (I - C+C) KvTu+Tu + (I - VC+) "

C+ + (I - C+C) KvTu +T U+ (I VC+)

(2)

where C = (I - LFU+)V

and

K (I - (I - C+C) vTu+Tu+v (I - C+C) -1

The proof to this theorem is given in chapter 3 and is stated here

for easy reference.

Corollar Z 5.1: The pseudo inverse of any matrix,
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where R and S are arbitrary partitions of the matrix A. In

rows, can be written in the following form:

A+ = (R+ - JSR + ! J)

where

J = E+ + (I - E+S)R+R+TsTK (I - EE+) ,

K = (I + (I -EE+)SR+R+Ts T (I -EE +) )-l ,

and

E = S (I R+R)

A+T =

Proof: Taking the transpose of equations (i) and (2):

(U+T - c+TvTu +T - (I - c+TvT)u+Tu+vK T (I - cTc+T)vTu +T

:.C+T + (I -c+TvT)u+Tu+vK T (I -cTc +r) )

(3)

(4)

with

CT = VT (I u+Tu T)

and

KT -- (I + (I -cTc+T)vTu+Tu+v (I -cTc +T) )-I ,

Noting that equation (3) is of the desired form, let

A= AT, R= uT, S= vT, K = KT, E = cT

and using the fact that (A+)+ = A, gives the desired result.



_

with

E

and

K

[R+ - E+SR + - (I - E+S)R+R+TsTK (I - EE+) SR+

E+ + (I - E+S)R+R+TsTK (I - EE+)]

s (i - R+R)

(I + (I - EE+)SR+R+Ts T (I - EP.+) )-1

E+ + (I - E+S)R+R+TsTK (I - EE+)

Simplifying, let

S

which gives,

A+ = (R+ = JSR+! J)

It should be noted that K,

exists for every R and S.

the inverse of a positive definite matrix,

In least squares parameter estimation one encounters the pro-

blem of finding the minimum nom solution for x of the matrix

equation.

Ax=b+e

where A is a n x m matrix, c is a m x i parameter state vector,

b is an observation vector, and e is an error vector. The least

squares solution of minimal Euclidean norm is given by

^

X'-- A+b

212
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Theorem 5.20: Let A be any n x k matrix, An. 1 be

the matrix consisting of the first n-i submatrices, and An the

nth submatrix, that is

Proof:

Corollary 5.i.

It is noted that A is in the form specified in

This implies that:

A÷ = (An_i + JnAnA__I_ Jn)

where

E+A + E +_n-- _n÷CI- nn_-_ _+-_q_. CI- n_n_

E E+_ + fiT .T )-1Kn = (I - n n)AnAn-i "n-Ihn (I - EnEn)

and

En : An(I- +A,__An_l)

Using the results of the above theorem the least squares solution of

Ax = b+e

may be realized as a sequential process. Noting that the least squares

solution after n observations have been made is given by

^

= A +xn b
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and writing A and b in partitioned form

n-- J + _ I "I

X (_-i nAnAn-i Jn) bn-i

in"

where bn_ 1 is the first n - 1 observation vectors and bn

the n th observation vector• VIJltiplying gives

is

xn -- A__ I bn_ 1 Jn AnA_-I bn-I + Jnbn

^ = __and noting that Xn_ 1 i bn-1 yields

A A ^

Xn = Xn-1 + Jn (bn AnXn-l)

It should be noted that no apriori knowledge is necessary to begin

the estimation procedure. One need note only that

^ ÷

x = Alb I

to start the procedure• In order to carry out this procedure it is

only necessary to compute sequentially the two matrices _ % and

AnAJ o__o_etwo_r_=osAnAJ w_ _to__os.o__o_o_.o
covariance matrix. To compute _An,

_j + :A_An = (A__ 1 nAnAn_l • Jn)

i_1 1
An

then

+ A
A+An = An-i n-i + JnAn (I An_ I An_ 1)
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and to compute An AnT

A_ ° A__,A_T,-Jn%An._! Jn)

F_T_-_T_4 _ln4
or

- n - JnA"AII-IAn-I

*_A_;-A-_n_ * _n_n

Weighted Observations

By weighted least squares it is meant to minimize (Ax - b)TR -1

(Ax - b), where R is a diagonal positive definite matrix and hence

there exists a matrix Q such that QTQ = R-1. In order to do this

it is only necessary to consider a matrix equation of the form

QAx = Qb +_ Qe instead of the equation Ax = b ÷ e. This indicates

that the least squares solution for x is given by,

^

x = (QA)÷QD C63

Theorem 5.21: A method for computing sequentially the least

squares estimate for x in the matrix equation QAx = Qb + Qe

when the observations are scalars is given by:

^ ^ ^

Xn = Xn-i + Pn (bn- anXn-l)
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whe re

r (an (I-A__1An._))+ if an

I .+ .+T aT-I
Pn -- (rn + anAn-IAn-1 n) _-l_T1 anT if

A÷
an n-lAn-i

= A+
an an n_ 1An_ 1

Proof:

ing way:

Consider the matrix equation partitioned in the follow-

X

-Qn-i Qn-I

"_ • • •

qn _

en_

i

!°n

where Qn-l' An-l' and bn_ 1 are the first n-i rows

th
of the respective matrices with qn' an' and bn the n rows.

A simple consequence of Theorem 5.20 indicates that when the

observations are scalar valued the sequential least squares solution

is given by

_ A

xn = Xn_ I + Snqn (bn - an Xn_ 1)

with

if

(qnan(I-(%_lAn_l)÷(%.lAn.1)) )+

qnan # qnan (Qn-1 An-1 )+ Qn-iAn-i
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S
n

qnan(Qn_lAn_l) +(Qn.lAn_l) +T anT qn}T -1 (Qn.lAn_l) +(i ÷

^ . .+T T T
_n_ iAn- iJ anqn

if

qnan = qbab (Qn_lAn_l) + Qn_iAn.1

To begin the estimation procedure

x_ = (qlal)+qlbl

but since ql is a row of the Q matrix composed of only one element

which is not zero this is equivalent to multiplying by a scalar.

Thus (qlal)+ = alql+-I implies that

^ ÷

xI = aI bI (7)

+

Since Qn-1 is nonsingular (Qn_lAn_l) Qn_lAn_l = An_ 1 An_ 1

which reduces the consideration to examining whether

_f

an = an__ i An-I

an _ anAn_i,An_i

or an'

then

sn = (qnan (I - A__ I An01))+ but by the same argument

as used to obtain equation (7)

sn = (an (I - A__ I An_ i ) an -i
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which implies that

^ ^

X =
n n-i

+ -1
+ (an (I - An_lAn_l) } qn

A

qn (bn- anXn-1)

and let

then

n

If

^

a _-_

n

Cn_ 1

^ ^

Xn-I + Pn (bn " an Xn-1)

÷

anAn- 1 An- 1 and defining

= (Qn-1 An-l) + (Qn-1 An-1)+T

then

S '_

n

and letting

a T T.-I
(I + qnanCn_l nqn J

TT
Cn_ 1 anq n

-1 T
rn = %% ,

then

S _'_

n

which gives

and let

-1 -I
(_n+an%-_) Cn-l_n%
^ ^ _ T._ _ -i ^
x = Xn_ 1 + (r n + anUn_lan)_n_la lqn qn (bn - ax-1)

C'n÷an an
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_en

^

X =
n

^ ^

Xn-I + Pn (bn - an Xn-])

The calculation of

Cn -- {A__1 - SnqnanAn_1+ : Sn)

If

Cn = Cn_ 1 -

Cn is done in the following way:

[A_TI - "_T"I"aTQTsT ]SnT

SnqnanCn-i + Sn (anCn-lanT + rn) sTn _ Cn_l aTnqnsnrT

an

T aT T
Cn = Cn-i - PnanCn-I ÷ Pn (anCn-lanT + rn) Pn - Cn-i nPn

and if

an = an _-i An-1

Cn = Cn_ I - Pnan Cn_ 1

Theorem 5.22: A general expression for sequential estimation

of a parameter state vector using weighted vector valued observations

is:

xn = Xn_ I - E_QnAnXn_ I - (I -EnQn_)Cn-i A"TQTKnnn(I - EnE_) QnAnXn=l

+ E_Qnb n + (I- EnQnAn) C "T^TKn-IAnqn n ( I - EnEn) Qnbn

where

E_ = (QnAn (I-A:_I An-l)+



220

and

Ks: c - n C Qn nCn_ 4Q 

Cn_l : (Qn_iAn_l)+ (Qn_IAn_I)+T

The proof is a direct application of Theorem 5.20 and expansion as in

Theorem 5.21.

A more interesting consequence of this theorem is when it is

+ +

assumed that An = AnAn_lAn_ 1 or An. # AnAn_lAn_ 1 . By this

it is meant that each of the rows of the matrix A is linearly

independent until the system becomes fully determined. In this case,

An _ AnAn_iAn_ 1 and after the system becomes fully determined

= A + nAn nAn-lAn-1 " Under this assu_pt_oa EriE = I or

= A +EnEn : ¢. The fact that EnE+n I if An # nAn_iAn_l

is shown to be true by noticing that EnE n is an orthogonal pro-

A +
jection operator on R(En) and since ,An # nA__iAn_l it is implied

that the range space of En is all Euclidean space and the identity

+ A : E+on Euclidean space is I. If An = AnAn_ 1 n-i then En n : ¢'

which implies that EriEn : ¢ If An _ A+" An n-iAn- i ' then

Xn : Xn_ 1 + EnQn (bn - AnXn_l)

but EnQn : (QnAn (I- An_lAn_l ) )+ Qn

and since the rows of An (I - +An_lAn_ 1) are linearly independent

+ )then QnAn (I - An-lAn-1 is equivalent to multiplying each row by a

set of constants and thus
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BnQ n = (An (I __IAn_l ) )+

If you let

then

If

+ A +Pn = (An (I - An_ 1 n_l) )

^ A

Xn : Xn-1 + Pn (bn - AnXn-1)

An = AnA__iAn_i

then

with

and

Noting that

^

Xn Xn_l TT ^: - Cn- 1AnQnKnQnAnXn -1

: C AT T--I
Kn (I + QnAn n-i nQn )

Cn_l = (Qn.iAn_l) + (Qn_iAn_l) +T

Kn = <-1 (Rb + AnCn_IAT)-IQ-I

+ Cn_ "T^TK ^ blanqn nqn n

which leads to

^ ^ _ .T^T-1 _)-1 qn 1 An_Xnxn -- x'_-i + L'n-lAnqn (Rn + AnCn-1 Qn (bn - -1)

and letting

C T-IPn : Cn_l_ (Rn+ % n-zA_ )

then

^ ^

x n : Xn_ 1
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Cn

Calculating Cn_ 1 is done as before. If An _ An__iAn_ 1

+ Pn ( C_ .A_ pT C "TPTCn-i - PnAhCn-i An ,,-. ,,+ Rn) n - n-iAn n

and if An -- An__l An_ 1 then

Cn = Cn_ 1 PnAnCn_l

Summarizing the results of this derivation:

xn = Xn_ I + P (bn - An -i)

_(A n (I A__ 1 An_z))+

P
n

+

if An : AnAn_iAn_ I

C

n

/%-i- PnAnCn-i + Pn(AnCn-l_ + Rn)PT

- C .TpT
n-iAn n if An _ An__iAn_ I

_ p .TpTCn_l n nn if 'A n : An_-iAn-i

The Covariance of the Estimate

Consider the vector equation Qb = QAx + Qe with A, b, Q, x,

and e defined as before where it is assumed that E(Qe) = ¢ and



that ECQeeTQ T) =

then

I where F. is the expected value operator.

to be the covariance matrix of the estimate,

As before the minimum norm solution to the matrix equation

Qb = QAx + Qe which is x = (QA)+(Qb - Qr), is given by

^

xn = (QA)+Qb, which leads to:

^ ^

CCXn, Xn) -- ECCCQA)+ Qb - x) CCQA)+ Qb - x) T)

-- ECCCQA) + Qe)((QA) + Qe) T)

= E(CQA) + QeeTQ T (QA)+W)

-- (QA)+E(QeeTQ T) (QA)+T

= (QA)+(QA)+T = ((QA)TQA) +

: ÷
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Deleting an Observation

Suppose the nth observation has been made and it is then

determined that the observation is bad. It would be desirable to

be able to back up and delete this bad observation and then continue

on in the estimation procedure without having to begin again from

the beginning.



224

Theorem 5.23: Consider an arbitrary matrix A = (U, %0,

G

and assume A+ is known. Partition A+ as A+ = H where

G and H have the same dimension as UT and VT, respectively.

Then an expression for U+ in terms of G and H and related

matrices is:

U+ = G(I + V(I - HV)+H)(I - M+M) (9)

with M = t-i - (I - HVXI HV)+H

The proof of this theorem is given in chapter 5 and stated agaEn

here for easy reference.

R

Corollary 5.2: Consider an arbitrary matrix A =
S

and assume A+ is known. Partition A+ = (F ! W) where

F and W have the same dimension as RT and WT, respectively.

Then

R+ = (I - BB+) (I + W(l - swO+ s) F (I0)

with
÷

B = W - W(I - SW) (I - SW)

Proof: Taking the transpose of equation (9)

U+T = (I MTM+T)(I + HT (I - Hv)+TvT)GT

and

UT+ -- (I MTM T+) (I + HT (I - vTH T)+vT)G T

with

MT = HT - HT (I - vTH T)+ (I - vTH T)
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By letting R = UT, S - VT, F-- GT, B = MT, and W = HT gives

R+ = (I = BB+)(I + W(I = SW) + S)F

and

B : W - W{I - SW)+ (I - SW)

A method for deleting a bad observation which is detected after

the next estimate has been calculated is obtained by using the

preceding corollary. This is done by partitioning the matrix A

and the vector b as before, then the nth estimate is given by

^

xn =

An

bn_ I

b n

Partitioning A+

then

A

X =
n

= (F!w)

(F_ W) )n-i

) • •

, ?
)n

and multiplying

^

xn -- Fbn_ 1 + Wbn

^

The idea is to be able to obtain Xn_ 1 in terms of Xn, An, bn,

and Cn which are all available at the nth observation stage•

(ii)
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Noting that

^

xn.1

^ -- + b
Xn-1 An-1 n-1 and substituting into equation (10) then

_+
W) ÷= (I - B_,_)(I + W(I - An An) Fbn_ I

using equation (ii)

A

xn (I - BnBn)(I + W(I + "= - AnW ) An(X n - Wbn) (12)

Since (ATA) +AT A+ ^+
= we have _n =

A gives

C T
nA_ and by partitioning

which implies that

(12) leads to

C T :

C T
W = n_ " This substituted into equation

^

Xn-1 = (I- BnBn)(l- Cn4(I- AnCn4)+An)(Xn - CnAnTbn)

with

C T C T
Bn = hA_ - nA_ (I -AnCnAnT) (I - AnCn4 )

and Cn_ 1 is obtained as Cn.I = 4-1 An-i

Application to a Dynamical System

In nonlinear parameter estimation of a dynamical system one

usually uses a linear approximation of the actual parameter state in

a neighborhood of a nominal parameter state. In this case the problem
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of the best estimate for x in the matrix equation Ax -- b + e is

also encountered. The problem is basically the same, but in this case

x denotes the deviation in observed and computed, and A

a mapping matrix maltiplied by a state transition matrix.

is of the form:

denotes

The equation

"Htl ¢(tl' to) )'tl"

Ht2 ¢(t2' to) Yt2

• X _ • '

Htn @(tn' to) Ytn

+

-e 1

I.1[

_e
< n

where Htn is a mapping matrix at time tn, (tn, to) is a state

transition matrix from time t0 to time tn, x is the state

:h
vector at time t0' Ytn is the tn observation vector, and en

is the nth error vector• This is applied to the method derived

in equation (10) and the same assumption is made that Htn¢(tn, to)
+

is equal to Ht (tn, t0)D t _lOtn_l or not equal, with

"Ht I ¢(tl, to)"

Ht 2 ¢(t2 , t0)

Dtn =

Ht n ¢(t, to)
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To make this assumption means that it is assumed that all the rows

of are linearly independent until the system becomes fully
Dtl

determined. This asstm_tion becomes natural in most estimation

procedures because the system is of the desired form. The resulting

equation for estimating sequentially the deviation in the initial

conditions is:

with

Xtn = Xtn_ 1 + Ptn (Y_

^

Ht n b(t n, t0)_tn .1 )
(13)

Ptn =

Dt + )+
(Htn¢(tn, to) (I - n.lDtn_l )

t +
if Htn¢(tn, to) _ Htn$(tn, 0)Dtn_lDtn_l

TT

Ctn_lC(t n, t O) Htn (Rt n + Htn¢(t n, t0)Ctn_lC(tn , t0)H_)-i

if Htn_(tn, t0) -- Ht-n _(tn' t0)Dtn-lDtn-1

and

+ +T

Ct n-1 = Dt n-1 Dt n-1

xt is the estimate time tn of the deviation in the initial state
n

vector and is the estimate at time t of the deviation in
xtn n

the state vector of position at time tn. oince it is desirable to
A
m

be able to calculate x_
n

it is noted that

xt = ¢(tn' tn-1)x--t-1
n n

(14)
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which leads to

x t = _Ctn, t o) xt 0
n

and

" - .c_.,_o)%
Xtn n

Substituting equation (16) into equation (13) leads to,

(lS)

(16)

*-- = O(tn.l,to)'lxtn.1 + PtnCYtn " ,In_(tn , tO)*(tn.l,to)'lxtn.1 )xt n

and substituting equation (16) again

i% =,(t.,t.._)it_x
#W

+ *(t n, to)P t (Ytn-Htn_(tn,tn.l) Xtn.1

If Htn.(tn , to} , Htn .(tn, to)D_n.lDtn.1 then

(17)

Ctn is computed sequentially as before,

Ctn " Ctn_ 1 - PtHtn*(t n, to) Ctn-1

• ,, c.,.c_,.9 c,._.c_.'o_HT"_$,T
n n n n

TT T

" Ctn. 1 '(tn, t 0) H;nPt n

and

If

4- ÷
m ÷

D;Dtn Din-1 PtPt n

Htn q_(tn, 1:0) - Htn*(Zn, to)Dt*n.lDtn.I

then
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^xtn = ¢(tn, tn_l)Xtn. 1 + Ltn(Ytn - Htn ¢(t n, tn_l)Xtn. 1)

with

Gtn =

Gtn =

Gtn_iHTn(_n + HtnGtnHTn) -I

fl+ ..+T

tntltn

Gtn-i - LtnHt n;t n-I

(18)

and

D_nDtn = D_n .IDtn.l

Equation (18) is obtained by noting that

+ n+T (n T D t ]+ whel_Ct = Dt 9_ =
n n n n n

t is the time when the
n

system becomes fully aetermined. At this point in time the generalized

inverse becomes the normal inverse and the reversal rule may be used.

Ct n

T

Htl) (t 1, t 0) tit? (t 1, t 0)

Ht2¢ (t 2 , t 0) Ht2_ (t 2 , t 0)

Ht: (t n' t 0) Ht: (t n' t 0)

-1

(_(t 1, t0)THToIttl_ (t 1, t 0) + _(t 2, t0)THT2Ht2@ (t 2, t 0)

)-1• . . _ (t n, t 0)+ + _ (t n, t 0) t n
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Ctn
-1 -1

@(t n, to) (¢(tn,tl)T-1HTIHtl_(tn , t1)

T-1HT H -1
+ ¢(tn, t 2) t2 t2 l(tn, t2) + . . . +

t "T-1HT H -1
(t n, n_l ) tn-1 tn-l*(t n, tn_ 1)

÷

+ HtnHtn)_ (tn,t 0)

and substituting into equation (18). Since the noted inverses are

to be taken of state transition matrices and this class of matrix

is implectic then the inverse is easily calculated without normal

matrix inversion procedures.

T-1

Conclusions

In real time operations one encounters the problem of estimating

sequentially a parameter state vector. The preceding derivation

outlines a procedure which one may use in moving from the n th

observation state to the (n + 1) st observation state whether one

has vector valued or scalar valued observations. This section

presents a way o£ deleting a bad observation and studies the

application to a dynamical system. It is believed that this method

will produce mere accurate results than the methods now beingused

which were mentioned ear]ier in this section. It should also be

noted that this technique can be modified slightly so that in the

sequential procedure any number of observations can be made before

the next estimate is calculated.
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5.9 A Generalization of the Wielandt Inequality

The spectral condition number K(A) o£ an arbitrary non-

singular matrix A is defined in terms of the spectral norm

[53° p. 81] by

K(A) = I IAII - I IA'lll.

The condition number serves two closely related purposes;

(i) it is an index of near singularity, hence can provide a measure

of the computational instability to be expected in the process

of inversion,

(2) by means of the Kantorovich inequality it provides a measure of

the rate of convergence of certain iterative processes [53., p. 100].

Clearly, if A is an arbitrary singular matrix K(A) would

not be finite; however, one can define quite naturally a generalization

of the spectral condition number by defining for square matrices

KfA)= IIFII IIAII

The purpose of this section is to develop generalizations o£ the

Wie]andt and Kantorovich inequalities using a generalized spectral

condition number. A discussion of these inequalities for non-

singular matrices can be found in [53., pp. 81-84].

Let llxll denote the ordinary Euclidean norm o£ the vector x,

and let the associated operator norm be

IIAII--s_ II_II.

llxll= l
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A singular value of a matrix A is the non-negative square

root of an eigenvalue of AA , where indicates the conjugate

transpose of A° Thus the value of ][All is the largest singular

value of A. We will denote the singular values of A by oi(A)

and the eigenvalues of A by li(A).

We now define formally what is meant by a generalized spectral

number of an arbitrary square matrix.

KCA)

Definition 5o4: Th__e_egeneralized spectral condition number

of an arbitrary square matri_____xA is defined by th___e_eequality

KCA) = I IAII - I IA+II

The following properties can readily be established:

CPl) KCA) > 1,

CP2) KCA) = KCA+) = KCA*),

cP3)if IIc )+li _.<IIA+II IIs+ll then KCAB) < KCA)K(B).

The symbols R(A) and NCA) will denote the range and null

space of A, respectively and a superscript i will denote their

orthogonal complements.

It is convenient to state and prove the following preliminary

lenmms :

2 2 2
Lenma5.5: Le__t_t o 1 Z 0 2 Z . . . Z ok be the eigenvalues of

M = A A corresponding to eigenvectors in N(A)x, then for any unit

vector x i__nnN(A_, Ok 2 _ x Mx.
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Proof: Let Xl, x2, . .., xk be an orthonormal set of basis

vectors for N(A)_ which are eigenvectors of M corresponding

2 2 k

to oI , . .., ok , respectively. Let x -- r aix i so that
i=l

, k _ , k

x Mx -- r_ aia'ci2xi3 x. -- r aia'ci2-I
i,j J i

k

> z lail2ak2 -_ %2
- i

Lenma S.6: Let G = (x,y) M(x ,y) where x and y are ortho-

normal vectors in N(A) _. Then the field of values F(G) is contained

in

, , CA)_ *{wMw I ww = i, weN , M-- AA}.

Proof: By definition, F(G) is the set of all (complex) scalars

of the form z Gz as z varies over all possible unit vectors.

Let z = (_1' _2 )' and w = (ZlX ÷ z2y), then z Gz = wl_.

Certainly w is a vector in N(A) x and w w = 1, hence, the

conclusion follows.

The main result of this section is summarized in the following

theorem:

Theorem 5.24: Fo__/_ranys_quarematrix A an___danypair of

orthonornml vectors x and y in N(A) .

Ix*My± I I_II I IAyll cos 0,

where

cot Co/Z) = KCA)
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Proof: The inequality is trivial if A is of rank i, hence

we assume that if A is singular, it is of rank at least two.

Now K(_- IIAqll II(A*A)÷II = IIAII z IIA÷II z = K2(A),

since M is synm_tric, and (M+)+ -- (_)+.

Let x, y e N(A)_ and form the two dimensional section

G= (x,y) M(x,y)

The rows of G can be shown to be linearly independent, thus G is

nonsingular. Let Ii and _2 < Xl be the eigenvalues of G and

aI > a2 > . . . > aK the non-zero singular value of A. Then

a12 = ti(N0 and al 2> _IZ _2 -> aK2. The letter follows from the

fact that G is non-singular and lenmms 5.5 and 5.6.

Let 6(G) denote the determinant of G and consider

1- !x*M_.j2 _ 46(G)
* * 2 * * 2

x sxy My (xMx+yMy) - (xMx-yMy)

2 (x* * 2
(),1+),2) Mx-y My)

If x and y are allowed to vary throughout N(A) _, the

2 * *
right member is minimized and Jx*MyJ /(x Mxy My) is maximized

• * /(x I_7 I%,) =when x Mx = y My. When this is true, Ix*My[2 * *

(_1/_2-1)2/(Xl/_2+1) 2. The right member is a monotonically

increasing function of _1/_2, hence is greatest when _1 = al

a_d _2 = CK2"
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* 2 * *
Thus to maximize Ix My I /(x Mxy My) with respect to all

orthonormal pairs of vectors x and y in NCA)_, these

vectors must be taken in the planes of the eigenvectors uI and

2 2
uK of M belonging to the eigenvalues aI and oK ,

respectively.

Evidently K(A) = al/aK. Hence, if the angle e is de-

fined by

KCA) - KCA)'I

KCA) + KCA) "i' -- cos O

we obtain

Ix*_I/Cx* *_y My)_<I1_11 IIAYll cos e, (i)

the desired generalized Wielandt inequality.

In the case in which A is non-singular, the Kantorovich

inequality is simply a special case of the Wielandt inequality.

This holds for the generalized situation also.

Corollary 5.5: Fo__Kranysquare matrix A and unit vector x i__n_n

NCA)_ ,

* 2 * * 2
(xx) > xMx x M+x sin 0.

* ÷
Proof: Let y = (x*x)M+x - (x M x)x. It is easily verified

that xy = 0 and that y ¢ N(A .
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x*M t *(M+)txLet u t = x and u t = x for t = O, 1, 2, . . .

uoM+x * , ÷Then y -- = u=ix and x My = u0x MM x - U_lU I. But

N.(A)m = N(M) _ = R(M+) = R(M} where R(_O is the range space of M

so that M+Mx = x and also NM+x = x for x e N{A) J=. Hence

, • u02 )xMy = u0 - U_lU 1 and yMy = Ul(UlU 1 - . Therefore

• * 2
6(G)/(x Mxy My) = u0 -UlU_l. But {i) implies that this is not

less than sin20 and the corollary, a generalization of the

Kantorovich inequality, follows, that is,

{x'x) 2 > x Mx x*Y+x sin20.

An Application

As an indication of the usefulness of the generalizations

presented here consider the following concerning the problem of

solving a system (that is, obtaining a solution vector x)

Ax=h

in whichwe select our initial guess, say x0

approximate solution. We require that hER(A)

that a solution exists.

and iterate to an

which implies

Let

Xn+ 1 = xn + Cnr n

where

Ca)

r n = h - Axn = A(x - Xn) = Asn (3)
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and

Sn--X-X n.

A method of projection is briefly one that assigns at any

step a subspace, defined by Pn _" 1 linearly independent columns

of matrix Yn and selects un in such a way that if

Cnr n = YnUn ,

then

Sn+ 1 = Sn - YnUn

is reduced in some norm.

For a given Yn' it is required to minimize

Sn+l Sn+l = (s n YnUn ) (s n - YnUn ).

Let

= *y + * +
Un (Yn n) Yn Sn Wn

(43

where wn is an arbitrary vector.

Then

Sn+ I Sn+ I = SnSn - Sn Yn(Yn Yn 1* YnSn + Wn Yn Yn Wn"

Since Yn Yn is positive definite, (5) is minimized when wn = O.

Therefore ,

(s)
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_i_nii_ ii'.÷lil_-"':_n_ _._÷_ 'n" (6)

The matrices Yn' which are, ordinarily, single column vectors

must change from step to step. The choice Yn is equivalmlt tO

the choice,

A

CnA-Y_ CYnYn)+Y_

since

Cnr n - CnASn = YnUn " Yn (Y:Yn)+Y:Sn

for any s n. This In turn implies that

CnA " Yn (YnYn) Yn "

C7)

But this is feasible rely if Yn = VnA for some Vn,

otherwise Cn could be obtained only after calculating

Taking Y:-V:A, where V: is. selected.and Yn

we have

. * AA* *_A A*v_ cv_ Vn)+VnA

or

_-^v n cv__" v_)+Vn_+ .

s_r_

A+.

co_u_ed

(8)

It follows then from (6), C7), and (8)that
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Ilsnll2 - I lsn÷lllz = Sn A Vn(V n AA Vn) Vn Asn

* * * + *

= rnVn(VnAAVn ) Vn r n •

If each Vn = v n is a single coltmm vector, then from (2)

and (8)

* * * + *

Xn+l = Xn + A Vn (Vn AA vn) Vn rn

since
rn = Asn ¢ R(A).

Let un=v n rn/(V nAA rn). Then Xn.l = Xn+Un A vn and

Ilsnll z - Ilsn+xll z = Unrn vn ,

or

* * * 2 * * *
(Sn+iSn+l)/(s n Sn) = I -Itn Vnl /sn SnV n AA vn. (9)

The method of steepest descent imposes, the restriction that Vn = r n.

The generalized Kantorovich inequality then provides a bound for the

right side of (9). By the corollary and (3) it follows that

* rnlZ * , , , +Irn _>rn AA rnrn (AA) rn sinZe

z rn _ rnrn A+* A* rn sinZe

> rn AA rnSn sn sin20.
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And finally from (9) we conclude that

II %+1112/II_nllz _> cos2 o.



fl_APTER 6

COMPUTATIONAL PROCEDURES

6.1 Introduction

In recent years many techniques for obtaining the pseudo inverse

of a matrix have appeared in the literature. These techniques are of

various natures, including explicit expressions for each element of the

pseudo inverse to approximate determinations. In this chapter several

of these methods are presented along with some comment concerning their

merits. Each method is identified by the name of the author of the

paper in which the method is presented. A numerical example is included

to illustrate the method presented. The same example is used to

illustrate each method to facilitate comparison of the computation

schemes.

6.2 Householder Method

Let A be an arbitrary matrix of rank r, and let A = FR

where each of F and R have r linearly independent columns. Then

A÷ = R (R'R) -I {F'F)P . Although this method gives an explicit

form for A+ it requires that: (I) A be factored as FR , which is

not easily accomplished on an electronic computer. {2) The inverse

of the non-singular matrices R R and F P need to be obtained,

and (3) the product needs to be formed. The factorization of A may

be accomplished by several procedures. Householder [55] mentions

three methods. The first of these is an iterative scheme. Let

242



243

A = A(°)= (aI(°) az(O) (o), , . .., am ) _ 0 be any n x m matrix

and ek be the kth colunm of the identity matrix of size k x k.

Let Jl be the smallest index for which a° (o) _ 0 and eT1 a. (o) _ 0.J1 J1

That is, the element in position iI is nonnull. Let Iij denote

the elementary permutation matrix whose effect of multiplying a

matrix on the left by Iij is to interchange the ith and jth rows;

that of multiplying on the right is to interchange colunms. Then

for some elementary triangular matrix L1 -I , possibly the identity,

the matrix

A (I)

-I
is null in the first Jl

in the next colunm.

-1 A(O)
= L1 IliI

columns, and null below the first element

If every row below the first in A (°) is null, the algorithm

is complete. If not, and if m = 2, let A (2) = A (I) and the

algorithm is again complete° Otherwise, repeat the process by pick-

ing out the first colunm containing a nonnull element before the

first° Let this be aj (i). Then for some i2, e2T I2i 2 A. (i) _ 0.2 J2

Hence for some L2 -I, the matrix

A (2) = L2-1 Iei 2 A (I)

is null in the first J1 - 1 columns, null below the first element

in the next J2 - Jl colunms, and null below the second element

in the next column.

The process is continued until reaching A (p) where either

p = n or else all the rows below the pth are null. Hence



A = M1A(P)

where

= IllI L1 12i 2 L2 • . .

which is nonsingular, and A (p) is a matrix whose first rows

are linearly independent with the remaining rows null. If p < n,

let

A(P)

columns of g 1. Then F = M and

factorization.

The products R R and R F

P be the matrix obtained by dropping the n - p rows from

and let M be the matrix obtained by dropping the last n - p

P = R will be the required

are Iler_itian and full rank so

that their inverses can be obtained by standard procedures for

inverting sy_netric matrices.

computed as the product

Finally the pseudo inverse, A+, is

A+ R(R* - 1 *= R) (F'F) -1 F

244

This method requires the factorization of A which, by the

method outlined above, requires considerable searching and matrix

manipulation although the process is straightforward. The two

required inversions are also troublesome, however, there are

relatively good procedures for inverting Hermitian matrices and the

two inversions could perhaps be done in parallel.

An example is now given to illustrate the above technique.
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Example: Let i0 ii)
A = 01-10 = A (°)

11 01

which is a 3 x 4 matrix of rank 2.

Let Ill = I and

-i
LII I 0 O)

= 0 1 0

-i 0 1 then

A (1) A(o)
= Lll -1 Ill -- 0 1 0 0 1 -I

-1 0 1 1 1 0
(ioii)1-1 0

1 -i 0

Let I22 = I,

-1
L22 i 0 0 1= 0 1 0 ,

0-i 1

then

A (2) A (I)= L22 -1 I22 (loo)/lo11/ 11oli)0 i 0 0 'i -I 0 _- 0 i -I
0 -I i 0 I -I 0 0 0 0

Hence p = r(A) = 2, so that

(loo/(lo!/ (loo)P= (lol 1) _d _=L1L2= ol o ol = olo0 i -i 0 1 0 i 0 I I i i

Thus H (1o)= 0 1

1 1 .
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Letting F = M and P = R we obtain

"'(_112 _d FF 2

2

Thl/s

A+ -- R (R* R) -I (F* F)-I F*

C= 0 1 1/5
1 -1

1 0

1/5
3/S ) i 2/3-1/3 -1/3

2/3 1

1/15

3 0 3 /

-1 5 4
4 -5 -1

3 0 3

6.3 Penrose Methods:

A somewhat similar method is proposed by R. Penrose in [71].

His method is to partition the given matrix after suitably arranging

the rows and columns in the following form:

A B _iB )C CA

where A is a non-singular submatrix whose rank is equal to that of

the whole matrix. Then the pseudo inverse is given by
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)" ( )A B = APA APC

CA-IB
C B PA BPC

* * =I * * -i * *
_here P = (AA + BB ) A (A A + C C) . The matrices AA + BB

and A A + C C are positive definite, since A is non-singular.

Thus, the pseudo inverse of any matrix can be expressed in terms

of ordinary inverses of matrices.

The same two basic problems as in Section 2 appear again.

Namely, to partition the given matrix into a form containing a sub-

matrix with rank equal to the rank of the given matrix, and to

obtain the inverses of two nonsingular matrices. Also, a method

must be available for arranging the given matrix into the required

form. This could be some method of elimination in which the rank

is determined at the same time as the arrangement is done.

Using the same matrix as in Section 2 we illustrate this

method.

Example: Let

m

i 0 1 1 1
0 1 -i 0

1 1 0 1

Let A 0)1

m C (i, i), then

A-1 = A, CA-1 B = (0, I) , AA = AA

0 0)1
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Hence

-1/ and C C =

* *-1 * *
P = (AA + BB ) A(AA + C C)

-i

-1/5)=2/3 1/15 1 3-1

Hence

R+ = APA A PC

BPA BPC

i/iS

1/15/lo i_o51(101/15(10(_31
(: o)( o;I (:-'o)C

o31S 4

-5 -i

0 3

By comparing this example with that in Section 2, it can be seen

that the two methods are equivalent. The two matrices which are

inverted are identical.

Method II (Penrose)

Penrose has also given a recursive method for obtaining the

pseudo inverse of a matrix which is extremely concise.



249

He makes use of the fact that the pseudo inverse of a given

matrix A can be obtained from any matrix D satisfying

* * 2
A A = D(A A) , since multiplication on the right by A+A+*A +

gives A÷ = DA . Let B = AA = (bij), and define a sequence of

matrices Cj for j = 1, 2, . . . by

C1 = I

Cj+l = I • 13 trace (CjB) - CjB

Penrose has shown that if r is the rank of the matrix A, then

rC r
Cr+iB = 0 and trace (CB) # 0, so that is D --

trace (CrB)

then DB2 = B as required.

This method has many advantages: It does not require the

factorization of any matrix; it does not necessitate taking the

inverse of a matrix. It involves only the basic matrix operations

of scalar multiplication, matrix addition, multiplication and the

trace. It does not require initial knowledge of the rank of A,

but rather this is determined by the algorithm since the iteration

stops when trace (CkB) = O, which is the case when K = tr (A) + 1.

If A is n x m, the procedure can be adapted so that the

matrices B, Ci, D are all square of size min (n, m). Hence, if
,

m_ n, B = AA is n x n and the method is used as outlined.

However, if m > n, the pseudo inverse of A is found so that the

, + (A+)*dimensions of B are n x n. Then using the relation (A) =

the pseudo inverse of A is obtained.
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Example: Let

A

1 0 1
0 i -i

I I 0

0

1 .

Then

B = AA

=12 1 1

1 2 -i

1 -i 2

2 1 1

'I1

1

2

Now C1 = I, CIB = B and

i 0 0 0 1

C2 = 0 1 0 0

0 0 1 0

0 0 0 1

(2 + 2 + 2 + 2)

2

- 1

1

2

1 1

2 -i

-I 2

1 1

')1

1

2

l i -i -i -2)

= - 6 1 -i

- 1 6 -I

-2 -i -i 6

6

C2B = 3

3

6

,.6 /9 -6 3

-6 9 5

3 3 6
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Thus

C3 = 0

0

0

°°° /1 0 0

0 1 0

0 0 1

(6+9+9+6) (i''6/9 -6 3

-6 9 3

3 3 6

9 -3 -3 -6 1

= -3 6 6 -3

-3 6 6 -3

-6 -3 -3 9 .

C3B = 0, thus the rank of A is 2, the iteration ceases, and A+

is given by

A+ -- DA = tr,C_, = 6 1 -1
1 6 -1

-I -I 6
I 0 1 1

0 I i

i -i 0

i 0 1

or

A''I 0')= 5 4
-Tg- -s -1

0 3

To show that this method is programmable for computer solution,

a flow chart is included.



2_i2

ad n, m

alJ j i, m

Cj+ 1 = trace, (CjB)

_Cl=l I

CjB

I-CjB A+ = (j-l)C__ 1

trace (Cj_IB)A

Fig. 1 Flow Chart for Penrose Method 2.
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6.4 The Decell (Cayley-Hamilton) Algorithm I

A formula for the pseudo inverse of an arbitrary complex matrix

has been derived by Decell [35] based upon the Cayley-Hamilton

Theorem. This computing scheme leads directly to a recursive algorithm

which is easily adapted to machine computation.

Theorem 6.1: Let A be any n x m complex matrix and let

xn xn-1 akXn-k I xf(X) = (-l)n(ao + a I + . . . + + . . . + an_ + anI )

be the monic (a0 = i.) characteristic polynomial of AA . If

1 _ 0 is the largest integer such that a k # 0 then the pseudo

inverse A+ of A is given by

A+ = -aklA*[(AA*) k-I
* k-2 *

+ aI(AA) + " " " + ak-2(AA ) + ak_II] .

If k = 0 is the largest integer for which ak = O, then A+ = _.

Proof: By the Cayley-Hamilton Theorem, AA satisfies its

characteristic equation so that

* )f(AA ) = (AA+)n + al(AA*n-i k(_*) n-k + .+...+a ..

+ an 1AA_ + anI =_.

If k _ 0 is the largest integer such that

* B0take B = AA and = I, then

ak # 0, then if we

ak Bn-kBn+ alBn-i + . . . + _- _.

Bn-k(Bk + alBk-I + . . . + akI) =

A
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This latter equation proves the existence of a solution to the equation

Bn-kx =

and, the general solution is given by

X--B n-I + Y- (Bn-k)+ Bn-_

= y- (Bn-k)+ Bn-_ .

In particular there exists a Y such that

Bk + alBk-I + . . . + akl = Y 0 (Bn-k)+Bn-ky .

* =Since B = AA is normal then for each integer p, (BP)+ (B+)p

and B+B = BB+. This fact together with the fact that B+B is idem-

potent implies

(Bn-k)+Bn-k = (B+)n-kBn-k = (B+B)n-k = B+B.

Hence,

Bk + alBk-I + " " ° + akl = YI - B+BYI"

But (AA*) ÷ (AA*) = AA+ so that

Therefore,

B+B (AA*) + (AA*-- ) --AA+

Bk + alBk-I + " " " + akl --YI - AA+YI .

A
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Multiplying on the left by A+ we get

A+Bk+_IA÷Bk'I+.... a?÷=_.
Noting that A+AA* *= A+B = A we obtain

A*Bk-I + alA*B k-2 + . . . + ak-iA* = _akA+

or

A+ = -I * * k-i
-ak A [(AA) + al(AA*) k-2 + ÷ ak_lI].

If k = 0, then (AA*)n = _ hence A = _ and A÷ = AT = ¢.

As a consequence of Theorem 6.1, D. K.Faddeev's modification of

Leverrier's method [39] can be further modified to describe a

computing algorithm for the generalized inverse of A. Consider

the following sequence Ao, A1, A2, . .., Ak:

Ao = @ -I = qo

A1 = AA tr A1 = ql

A2 = AA B1 tr A2

--'f--= q2

Ak_1:AA_-2 trAk_1
k-i

B = I
O

B1 = Al-qlI

B2 = A2-q21

Bk_ 1 --A-qI

AkAA Bk- 1 tr Ak Bk = Ak-qkI

_ - qk

Faddeev shows that qk = ai' i = i, . .., k ; hence by Theorem 6.1

we have either that A+ = _ or
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= _aklA*[(AA*)k-l- + al(AA*)k-2 + . .A+

-i *

= -ak A Bk_ 1 .

• + ak_lI]

Example:

Then

Let

A
i 0 i I 1

= 0 i -I 0
i i 0 1

AA =
2 1

1
3

It is computational to confirm that

hence that k --2, a2 - iS, aI - -8,

f(_.) = (-1)(_. 3 - 8}, 2 + 15}0,

and a0 : I. Thus

A+ = 1 * *- 1T A (AA 8Z)

i 3)- 5 4
1Y- -s -1

0 3

It should be noted in using this algorithm that if A is n by m

,
with m > n, then one could replace A with A in the above and using

the relationship (A*)+ (A+) *: obtain A+ . This enables one to work

with the smallest possible matrices in the characteristic polynomial.

Method II (Decell)

Decell [32] has presented another explicit form which gives rise

to an algorithm for the computation of the pseudo inverse• This par-

ticular form arises from the following theorems.

A
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Theorem 6.2: For any matrix A, A = WAY, where W and Y

are, respectively, any solutions of

WAA = A (i)

A AY = A . (2)

Proof: Properties P3 and P4 of Theorem 3.1 guarantee a solution

to Equations 1 and 2, in particular W --Y --A+ . If W and Y are

solutions then

AWAA = AA and AAYA=AA.

But since BAA = CAA implies BA = CA , then

AWA = A and AYA = A.

Also,

W_W = AW _d YAYA= YA

so that

(WA) = WA and (AY) = AY.

Therefore, X = WAY satisfies the Penrose equations:

A(WAY)A = AYA = A

(WAY)A(WAY) = WAWAY = WAY

[(WAY)A] = AAYW = A W = (WA) = WAYA

[A(WAY) ]+ * • , , ,= Y WAA = Y A = (AY) = AWAY .
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Thus A+ = X-- WAY .

Corollary 6.1: Fo__[rany matrix A, A+ = A SIASzA

where S1 and S2 are, respectively, _ solution of

( )SlCAA ) = (AA) (3)

and

Proof:

we get

(AA)S 2(AA) = (AA) . (4)

Since BAA = CAA implies BA = CA, taking transposes

* * * * * * * *

AA B = AA C implies A B = A C .

Applying this result to Equation 3

* * * * * *

AA SI_ = /_ implies A SI_ -- A

so that A S1 = W satisfies Equation 1 ofTheorem 6.2. Similarly,

+ * *

if A_2A A = A A, then

A AS2A = A

hence Y = S2A satisfies Equation 2 of Theorem 6.2. Then by the

conclusion of this theorem we have the result, namely

A+ A* *
= SIAS2A •
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Theorem 6.3: If B i__sa matrix an__ddthere exis_.____tnonsin_ular

matrices P and Q such that PBQ = E is idempotent then _= QEP

is a solution of BXB = B .

Proof: Since

B = P 1 ,

then

B_B = (p'IEQ-I)QEP(p-IEQ-I) --p-IE3Q-I - p-IEQ-I = B .

Corollary 6.1 and Theorem 6.3 suggest an algorithm for computing

the pseudoinverse of a complex matrix F. Recalling that

F+ = (F*F)+F *,

we r_duce the problem of finding F+ to that of finding the pseudo-

* (C2) *inverse of the hemitian matrix F F = C. Since = C, there

exist nonsingular matrices P and Q such that

: = Io

where I is a rank r identity matrix. We let C - A in Corollary
r

6.1, so that

, • , , C2AA = AA = CC = CC -- .

Then according to Theorem 6.3, choose solutions S1 = S2 = QIoP

so that
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and

C+ = (CX1}2C ,

(F'F) + = C+ ,

F+ = C+F* ,

Computing programs are available for calculating S1 and S2

(eog., STORM, Statistically Oriented Matrix Program, IBM). In general,

these programs only compute some solution of the equation AXA = A,

usually different from A+. These results allow one to construct

a solution to all four Penrose equations given only a solution to the

first, namely, AXA = A.

6.S Greville Method

Greville presents a concise recursive algorithm for computing the

pseudo inverse of a matrix. The algorithm is as follows:

Let a k denote the k th colunm of a given matrix A, and let

denote the matrix consisting of the first k columns. ConsiderAk

Ak in the partitioned form (Ak_l, ak) .

÷

Compute dk= Ak_ 1 ak

and Ck = ak - Ak_l dk . If Ck # 0, let bk = C_ .

0,  o u,o

Then

-1 " dk b

b k
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+

To initiate the process, take A1 = 0

+ T -I/2 Totherwise, A1 = (a al) aI .

if aI is a zero vector;

This algorithm is very easy to follow and compute. It requires

only one decision in each cycle. It requires no inverse of a n_trix.

Example: Let

i 0 1 1 1
A = 0 1 -I 0

1 1 0 1

A1 = I_) ' al=I (_)i ' then Ai = (i/2, 0, I/2 ).

d2 = A1 a2 = (1/2, 0, 1/2) = (1/21
1

c2 = a2 - Ald2 =_ 1/2 # 0

. -Hence b 2 = c 2 = (-1/3, 2/3, 1/3) and A2 = b2 2/3- 1/3, 1/3)-1/31 2/3, 1/3

+

c 3 = a 3 - A 2 d 3 (i/= - - 0 1

1 1 -

+

Hence b 3 = (1 + d3 d3 )-1 dT A_

( 2/3 - 1/3 1/3J= (I + 2) -I (i, -I) _-i/3 2/3 1/3

= (113, -1/3, 0)



Thus
1/3 0 113 )= 0 113 113
113 -1/3 0
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Now 2/3 Jd 4 = 1/3
1/3

and c4 = 0 so that b 4 = (1/5, O, 1/5)

b4 = 1-_ .o.)-1 5 4
4 -5 -1
5 0 3 ,

To show that this method is progranmmble for computer solution,

a flow chart is included.
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Read n, s
i,j--l,l to n,m

I + -la_Ai = <al,al>

F

+
AI= 0

÷

dk = Ak_la k

ck--ak Akldk

ck = 0 bk = c_

T

_. c_÷g_-_ d____

Fig. 2 Flow Chart for Greville Method
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6.6 Hestenes Method

Hestenes obtained a scheme for inverting matrices by a process

called biorthogonalization. This process can be extended and modified

to all rectangular matrices of any rank.

The concept of biorthogonalit T can be expressed inmatrix form

as follows. The vectors (in an n-dimensional space) Ul, u2, . ..,

un can be considered to be the coltmmvectors of a matrix U and Vl,

1 1 1, Vn, the row vectors of a matrix V. The set is biorthogonal

if

VU = I .

If n = m, then V is the inverse of U.

Hestenes poses and solves the problem: Given two sets Ul, . ..,

un and Vl, o .., vn of n vectors in an m-dimensional space

(m > n), obtain a biorthogonal system by modifying the v's. The

solution is arrived at by letting V_0), . . . , vn(O) be the

initial choice for the v's. These vectors are modified successively

in n steps. After n steps the vectors v_n), . .., vn(n) will

be a solution to the problem.

In the kth step the vectors vk(i-l) are transformed into a

new set v_k) by the following computations.

Ckk--<Vk(k-1) I._'> where <a,b> " (aTb) 1/29

-I

ck = Ckk

v (k) = c (k) v (k'l)
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c(k)
where ij = _ij (j _ k), Ckk)=Ck, cij) = -CikC k for i#k.

(k (k

The only difficulty is to insure that Ckk # 0. This will

not arise if V (°) is taken to be U .

To compute the pseudo inverse o£ a matrix, the method is

modified by adding rows to the original matrix which are orthogonal

and which raise the rank of the matrix to its colunm dimension.

Then the method is applied to the resulting matrix. The pseudo

inverse of the original mtrix is obtained by deleting the last

added colunms of V (n) .

Example: Let

A
1 0 1 1

= 0 1 -i 0

1 1 0 1

Add two rows to A which are orthogonal to all other rows.

and let

U

i 0 i 1 1

0 1 1 0

= 1 1 0 1

i"-';--';--:i
0 i 1 -i

, (i 0 1 1 0 1

V (0) = U = 0 I i 0 i

1 -1 0 0 1

1 0 1 -1 -i

) ' o?Then Cll = v 0), Ul = (I, 0, I, i, 0)(i, 0, i, i, = 3

so that c I = 1/3.
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c21 =<v_ 0), Ul)= (0, 1, 1, 0, 1)(1, 0, 1, 1, 0) T = 1,

(1) cI -113c21 = -c21 =

_ -<_o_,u_'_:c_,_,o,o,_c_,o,_,_,o_T._

(i) cI -I/3c31 -- -c31 =

_41__<,,_o),"i)--(I,o,I,-i,-i)(I,o,I,1,o)T--i,

_i__ _ -_I_= -C41 =

Hence

/ 1/3 0 0 0 \

I-1/3 i 0 0Jc(1) = I-i13 o i o

_-i/3 0 0 I

and

Vl(1) 1/3 0 0 O) l1 0

-1/3 1 0 0 0 1
= -1/3 0 1 0 1 -1

-1/3 0 0 1 1 0
i/ /1/3 i/3 i/3 i

213 -1/3I_! ,-_/_o o= -1/3 -1/3/_i_ -_ __- _,2-3 2/3 -413

Now

c22 = <v_ 1), UzX2= (-1/3, 213, -113, 1)(0, 1, 1, 0, 1) T= 813,

(2) = 318c22

c12 = <v_1), u2_= (113, 0, 113, 1/3, 0)(0, 1, 1, 0, 1)T = 113,

c(2) -1/8
12 =

= <v_ 1) u2>= (213 -1, -113,-113, 1)(0, 1 1, 0, 1)T -113,C32 , , , =

(2) = 1/8c32
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c42 = vl 1) , u 2

c(2)
42

= (2/3, 0, 213, -4/3, -1)(0, 1, 1, 0, 1)T-- -1/3,

= 1/8.

Hence

V(2) C(2)V(1) / 1 -I/8= = 0 3/8
o 1/8
0 1/8

0 0 \ / 113 0 113 113 O\

0 0 ) 1-113 1 213 -113 1i 0 _ 2/3 -i -I/3 -i/3 1

0 I _, 2/3 0 2/3 -4/3 -1

(3/8 -118 2/8 3/8 q18\ \

-1/8 3/8 2/8 -1/8 3/8
sis -7/8 -2/8 418 918
5/8 1/8 6/8 -11/8 -7/8

Likewise

6/21 0

V C3) = -2/21 7/21
5/21 -7/21

15121 0

6/21 9/21 -6/21
5/21 -3/21 9/21

-2/21 -3/21 9/21
15/21 -30/21 -15/21

and

V(4) =/ 1/5 0 I/S 5/5

I-1/15 1/3 4/15 -1/5

4/15 -1/3 -I/15 -1/5

k 1/5 0 llS -2/5
-1/5 1

2/S

2/S

-61s

Hence the pseudo inverse of A is obtained by deleting the last

two cohmm.s of V (4) .

A+
/ 1/5 0 1/5 \

= |-i/15 1/3 4/15)4/15 -1/3 -1/15
\ 1/5 0 1/5

Hestenes makes the statement that the process requires n divisions,

2n3 multiplications, and 2n2 (n - i) additions.
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6.7 _le Method

It has been shown that the best approximate solution of the

equation Ax = b is unique and is given by x = A+b. Pyle has

facilitated applications of this type bycontributing an algorithm

for obtaining A+b, assuming AA+b = b.

This computational technique is a variation of the gradient

projection method. The basic steps in the procedure require the

application of the Gram-Schmidt orthogonalization process first

to the colunm vectors of A , then, if A is not full row rank,

to the column vectors of A. A computer program (Fortran IV for the

IBM 7090) using the method has been tested and used in connection

with the generalized inverse-eigenvector method for solving problems

in linear programming.

Recall the following properties: A necessary and sufficient

condition that Ax --b be solvable is that AA+b = b, and if this

condition is met, then x = A+b -- (I - A+A)y for some (compatible)

* +

Also, A, A A, A , and A+A all have rank equal to trace

A*A, (A+)* (A* += ) so that we may assume that in A(m x n) that

m<n.

Assume the m x n complex matrix A satisfies AA+b = b.

Let the row vectors of A be denoted by {a (i)}, (i = I, . .., m);

the elements of b by {b(i)}, (i = i, . .., m), and the ith

equation in Ax - b may be written either as the vector product

a(i)x = b, (i = I, , .., m),or the inner product (x, a (i)*) --bi,

where the inner product (u, v) of two vectors is defined by

yB
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n

(u, v) = _ uiV i . The first r linearly independent a %i)*""
i=l

will be designated {_(i)* &(i)*} , (i-- i, . . . , r) . The { ) are

determined by applying the Gram-Schmidt orthogonalization process

to the vectors {a(i)*} , (i --I, . .., m) , obtaining the ortho-

normal system of vectors {,(i) }, (i = i, . . . , r), where

n(1) _ i _(i)* nCk)=
P

ii (i)"ii

with

k-I

Ck)= iCk)* z
i-i

1 _(k) , k = 2, 3, . .., r

II (k)tl

( _Ck)* nCi))n(i)

(Remarks : a (i)* is the first non-zero a (i)*. The notation

the length of u, means _ for any vector u.)

Determine successively the scalar values {ak } and

vectors x (k) for (k = i, . .., r) by using the relations

llull,

_k

6k _ (x(k-l) , ._(k)*)

fn(k) , &Ck)*)

and

x(k) _- x(k-l) + akn(k)

where x (°) =O , (the null vector) and {6k} , (i = 1, . . . , r)



i

270

consists of those elements of { bi} , (i=1, . . . , m) corres-

ponding to the linearly independent subset { a {i)* } determined

in the application of the Gram-Schmidt process, listed in the same

order.

Theorem 6.4: x (r) = A+b.

Proof: The proof is accomplished by showing by induction

that Ax (r) = b, then noting the consistency assumption

AA+b = b. Since x (I) = aln(1), where

61
n{1) _ 1 _(1)* and -

. aI ,, .I I .(13 I I (no1) ,  ,c1)

then

&(1)x(1) = _(i) I iCi)* 61 =
ilac,..),,ii on(l)' , fi(1)" )

_illa(1)*ll _(i)_(i)*

= [ (i(1), , it1). )ll_{i).llI . = I_I

By the Gram-Schmidt process MCa (1)* a (k)*

MCn (i) (k)) where MCn (I) (k)) is the linear
p . • . , _ , • • • ) n

manifold spanned by the vectors {nCi)}, (i = I,.... , k) .

Suppose x (k-l) is a solution of the k-i equations of the system

Ax = b corresponding to {{t(I)*) , (i = i, . .., k-l), i.e., that

a (i) x (k-l) = bi, (i = i, . . . , k-l). We must show that
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_Ci)xCk) bi Ci = I . k). Now, C.Ck) Ci))= , • • • _ _ n = 0

Ci) nCk-l))for Ci = I, . .., k-l), together with Men , • • • ,

MCiCl)* iCk'1)*) i_li, . . . , es

_(i) Ck) = criCk) , _Ci)*) = o"

andros

aCi)x (k) = &Ci)cxCk-l) + ak • n(i)) = _Ci)xCi-l) + 0 = 5i

_r

Now if

(i = i, • • • , k-l).

6k - (x(k-l), a(k)*)
' p

_k - (.Ck), _(k)*)

then

_(i)x(k) = _(k)x(k'l) + bk" cx(k-l)' aCk)*I _(k)n(k) = 6k "
[ (nCk) , &Ck)*)

Hence,

Ax (r) = b.

Under the consistency assumption AA+b = b, the equations cortes-

,

ponding to any linearly dependent colu_s of A will be auto-

matically satisfied by x(r) , or the system is inconsistent. In

,
practice, if dependent colu_s of A are encountered, the

corresponding equations may be checked for consistency by substitution



272

of the current x (k) and then set aside since they do not enter into

the continued application of the algorithm.

where x (r) is a linear combination ofThus Ax (r) = b

coltmms of A . Since

(I - A+A)A * = A - A+AA* = A - (A+A)*A *

* C--A)*AA"* *A - =A -A =¢

then x (r)

That is A+Ax (r) = x (r) .

for some y.

Thus

is an eigenvector of (I - A+A)

By Property 3.25,

for eigenvalue )t = O.

x Cr) = A+b + (I - A+A)y

x (r) = A+Ax Cr) = A+A[A+b + (I - A+A)y]

= A+AA+ b + (A+A - A+AA+A)y

= A+b + (A+A- A+A)y

= A+b .

Now, if AA+I = AA + = I, the above algorithm may be used to

obtain, successively, the colums of A+ by taking successive b

vectors equal to the columns of the m x n identity matrix. Unfor-

tunately AA + = I if and only if r = m, a somewhat special case.

Usually AA + _ I and the method must be extended as indicated by the

following theorem.

Corollary 6.2 :

o_ffth__£egradient projection algorithm with b vectors chosen,

+ A+AA÷successively, as columns of AA , yields X = = A+.

AX = AA+ is always solvable and application



+Proof: = A+ implies AA+(AA +) = AA + for any matrix A.

But this is the consistency hypothesis.

Corollary 6.2 would be of little interest except for the

following theorem which gives a method for obtaining AA +.

Theorem 6.5: Let {{(i)}, (i - i, . . . , r) be the ortho-

normal set of vectors obtained by a_lying the Gram-Sclmidt process

to the colunms of A. Then
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AA _ -_ rZ {(i) {(i)*

i=l

Proof: The vectors {_(i)} , (i -- 1, . . . , r) provide an

orthonormal basis for the column space of A since they are ortho-

normal linear combinations of the linearly independent colunms of A.

Since AA+A = A, the {{(i) }, (i = I, . . . , r) are eigenvectors

of AA+ corresponding to the eigenvalue k = i. Since rank A+ --

rank A+A = trace A+A, and since (A+)+ = A, then rank A = rank AA+.

Therefore, r = rank A = rank AA + = dimension of the range of AA+,

(written R(AA+)). Thus the {{(i)}, (i = i, . . . , r) provide

an orthonormal basis for R(AA+). Extending the {_(i)}, (i = I, . . . ,

r) to an orthonormal basis {_(i)}, (i = i, . . . , m) of Cm ,

m-dimensional complex unitary space, yields vectors {{(i) },

(i = r + i, . . . , m) which are eigenvectors of AA + for eigen-

value A = 0, since for (i = r + i, . . . , m), # = A*{ (i) and thus

= (A+)*A*{(i) = (AA+)* {Ci) = AA+ {Ci) .
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Consider T -- [_(i) , . . . , _(r)], the matrix whose colunms are

Tr* *the {_(i)}, (i = 1, . . . , r). Then AA+T = T implies AA+ = TT .

It is easily verified that

m

r _(i)_(i)*

i=l

=I

hence
"4

m r

I Z _(i) _(i)* _(i) _(i)* *- = _ =Tr .

i=r+l i=l

Thus

Tr* AA+Tr * AA +(I m

i=r+l

_(i)_(i)*) = AA + + 0 = AA+

since the {_(i)}, (i = r + i, . . . , m) are eigenvectors o£

AA+ corresponding to eigenvalue X = 0.

Example: Let

i
A = 0

1
o11)1 -I 0
1 O_ 1

Thus

a(2)* (°I1

0

a(3)* /1)= 1
0

1
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Apply the Gram-Schmidt process, obtaining

(1) _ 1 o .(2)_ 1 _(3)=

1 ' _ , 001

Thus &(1)*= aC1)* _C2)* _ at2)* and r=rank A = 2. Since

r = 2 < 3 = m, AA+ n_st be computed. Let the cohmm vectors o£ A

be designated

1

Apply the .Gram-Schmidt process, obtaining the r = 2 vectors

Then

2 [-2 -I

r. {(i){(i)* = _ k 1 2i=l 1 1
1 .

2

Note that trace AA+ =.:2 = r.

Now solve Ax = b (i) (i = i, 2, 3) where

b(1) = _ 1 '
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(Observe that, in gener.al, only r components of each b(i) are

required; in this case, the first r.)

Applying the gradient projection algorithm, obtain

= 2¢3 -¢15
corresponding to b(1): a 1 -9-- ' a2 = _ '

0 x(2) 1
1 ; = l'g" =

1

the first cohmm of A+;

corresponding to b (2) :
-¢3 /15

al = T' a2 = T

; = ._. _ = the second cohmm of A+;

= /3 = 4/15
corresponding to b (3) : al -ff ' a2 --4T- '

X(1) = 9- _ ; =

the third colun_ of A+.

Thus_

3 0 /

i -i 5 43

3 0
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6.8. Ben-Israel and Werson Method

Ben-Israel and Werson presented a method for computing the

pseudo inverse of a given matrix which is equivalent to the methods

of sections two and three. However, a condensed tableau is pre-

sented to £acilitate the computation procedure. It does require

the inversion of only one matrix instead of two as in sections two

and three.

The problem method is formulated as £ollows:

Let A be the given matrix. Let E be a nonsingular matrix

and P a permutation matrix such that

EAAP = .......

00

where r is the rank of A A. Using the relations PP = I and

A*AA + = A we have

Ci)

APP = F_A (23

which implies

P*A÷ = + z C33

where Z is in the null space of EA AP.

We will now show that Z - 0. By (i), the colungts of Z lie

in the null space of H . The latter subspace is the orthogonal

complement of RCH) = R((EAAP) ) = R(P AAE ). Since E is

nonsingular and R(A*A) -- R(A*) = R(A+), we verify that

R(H) = R(P*A+). On the other hand R(H) = R((FA_)*) = R((EA_) + ).
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Therefore RCP*A ÷) " R{ (EA*AP)

in N(H ), most vanish by (3).

÷
) = RCH),

Collecting the above results,

and Z, whose colunms lie

EA {H*+ 0)EA*= = = • (4)

From (1) and (2)it follows that the last (n - r) rows of EA are

,
zero; from the definition of H it therefore follows that the

matrix H EA consists of the first r rows of EA . Therefore

I'H-I+EA* -- H+_H*EA * - (H *+ 0)EA* (s)

From (4) and (5) and the fact that P is a permutation matrix it

follows that

A+ = pHH+EA *
(6)

Finally, if F is an n x (n- r)

,NCF ) = RCH)

matrix such that

then it is well known that

[_+ = In - FF

and (6) becomes

A+ = P(I n - FF )EA . (73
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Given H = (Ir D), a natural choice for F is

(:C::)
An elimination method for computing the pseudo inverse may be

based either on (4) or (7). Both equations reduce for nonsingular

A A to A+ --EA , and for nonsingular A to the well-known result

* FAA* *A -I = EA , where E is defined by -- In . If the matrix AA

is singular then the method (4) rewritten as

A÷--P (__I__)( (Ir÷ DD*) -I 0)FA*
_ A.2

required the inversion of the r by r matrix

if A A is singular, the method (7) rewritten as

(8)

(I r + DD ) . Similarly,

[ lA+ -- P I- :in[r (In_r+D'D)-I (D* -In_r) EA (9)

requires the inversion of the (n - r) x (n - r) matrix (In_ r + D D).

Since zero rows (or columns) in A result in corresponding

zero coltmms (or rows) in A+, an obvious reduction in work can be

achieved by working with A, a matrix obtained from A by striking

all zero rows and columns; computing A+ by either (8) or (9) and

inserting zero colunms and rows to obtain A+. Another possible

reduction in computations and space is by working with A A if

m > n (A is an m x n matrix), and with AA if m < n. The

latter case results in A *+ which must then be transposed to obtain A+.
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For nonsingular matrices the above methods require more operations

,
than the ordinary inversion methods, due to the formation of A A.

Thus for the nonsingular case: m = n = r, both methods require

(5/2 n 5 - 2n 2 + n/2) multiplications, (3/2 n 2 - n/2) divisions

and (5/2 n 3 - 2n 2 + n/2) additions.

Because the last (n - r) rows of EA are zero, in method (9)

one need not compute the last (n - r) columns of the matrix

(I - FF ). As in other elemination methods, the above methods

depend critically on the correct determination of the rank, which in

turn depends on the approximation and roundeff errors.

Example: Let

A

AA =

(A A,A ) =

I 0 1 lJ
0 1 -i 0

1 1 0 1

2 1 1 2 /

1 2 -i 1

1 -1 2 1

2 1 1 2

i i I 2

2 -i i

-i 2 i

I i 2

1 0

0 1

1 -I

1 0

1

0
1

2 0 1 2 i 0 i_>

0 3/2-3/2 0-1/2 1 1/2
0-312 3/2 0 112-i-i/2
0 0 0 0 0 0 0

I! i i 2 I 0 1 _)

3/2-3/2 0-1/2 1 1/2
. 0 0 0 0 O, 0

0 0 0 0 0 0

li 1 1 2 1 0 I

1 -1 0 -1/3 2/3 1/3
0 0 0 0 0 0
0 0 0 0 0 0

li 0 2

I -i

0 0

0 0

2 4/3 -2/3 1/3_
0 -1/3 2/3 1/3
0 0 0 0
0 0 0 0
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i 1_0_ _1_ :1_

,0 0

0 0

1 215 -113 115

_0_ ___0 -i/3_2/3_0 0 _1!3_)_0 0 0 " Hence r = 2

/ • (D = _ 0 ' EA = 2/5 -1/3
-1/5 2/5

and 12 + DD = - 2 . Thus (I2 + DD )

and A+ : I- ( (Ir + DD*)-1 0) ' 0

i/311/3

2/5i/5 i/s)3/4

( 03)i - 5 4

IT s -i
0 3

It should be noted that the matrix to be inverted, (I 2 + DD+),

is the same as the matrix (._ ÷ BB ) of section three which is the

same as R R of section two. This method has the advantage in that

it requires the inversion of only one matrix and has a concise

computational layout.

6.9. Ben_Israel and Charnes Method

In their comprehensive paper on generalized inverses, Ben-Israel

and Chames include several altemative expressions for the pseudo

inverse of a matrix. Included among those is the Lagrange-Sylvester

interpolation polynomial for A÷ .
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For any square matrix A, let o(A) denote the spectrum of

A (the set of all eigenvalues of A).

Then

II , #% /
A+ = r , _+ _eeo (AA) (AA- I) A*

Xeo (A A) n ,
x_eea (A A) X e)

where for the real number x, x+ = 1/X if X = 0 and x+ = 0 if

)k= 0.

In a footnote, it is pointed out by the authors that the

Lagrange-Sylvester interpolation polynomial is not a practical way

for computing A+, since it is very sensitive to errors in the

,
computed values of o(AA) .

,
Also the computation of the eigenvalues of A A is itself a

troublesome task although there are schemes for computing them.

Example: Let

and solving

Hence

I 0 1 1 I , ( 2 1 1

A = 0 I -I 0 , then AA = 1 2 -I
I I 0 1 1 -i 2

2 1 1

[A* A - XI[ = 0 for X we get that o(A*A) = {0, 3, 5} .

n (A* 1

A+ = z x+ x#e¢{o,3,5} A- eI #%
Ii (x-e) A

X=3,5 x_ec{0,3,5}

i

1

2

* #% * * It *

3 + (A A-0.I)(A A-SI)A = 5+ (A A-0.I)(A A-3I)A

(30) (35) (so) (53)
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which upon simplifying becomes

A+ 1( o3)= - S 4
-5 -1
0 3

6.10. Ben-Israel Method

Ben-Israel developed a recursive 'technique for calculating the

pseudo inverse of a matrix which is a generalization of an

iterative method, due to Schulz [81], in which the sequence of matrices

are defined recursively by

Xn+ 1 = xn (2I AXn), n = 0, 1, 2, 3, . . .

and is shown to converge to A"1 whenever x° approximates A -1.

Ben-Israel pointed out the fact that the computational significance

of his iterative method was impaired by the need for knowledge of

However, in the months between the completion of thses results and

their publication, Ben-Israel substantially improved his theorem

by finding a starting value whichwaives the need for AA +. In the

discussion below, we consider Ben=Israel's original iterative method

and then his modification of it.

(i)

_t

Theorem 6.6: Th___e_esequence of matrices defined by

where

Xn+ 1 = Xn (2PR(A) - P/n) , n = 0, 1, 2, . . .

Xo is an n x m complex matrix satisfying

(2)
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Xo = A Bo for some nonsingular m x m matrix Bo,

Xo = CoA for some nonsingular n x n matrix Co,

][AX - PR(A)[[ < 1 ,

[[XA - PR(A*)[ [ < i ,

converges to the pseudoinverse A + of A .

(3)

(4)

(s)

(6)

Proof: As mentioned before (and as is shown in Ben-Israel

and Charnes [5], the pseudoinverse A+ of A is characterized as

the unique solution of the matrix equations

AX = PR(A) ' (7)

XA = PR(A*) . (8)

Therefore, it is enough to show that

Xn+ 1 -- Xn(ZPR(A) - AXn)

satisfies

lim I n - PRCA)II = 0 ,
n-_

lira I IxA - PRCA*)I] = 0 .

From Equations 2, 3, and 4, we show that

(9)

(io)

Xn=AB n , n = O, i, 2, . . . (II)

xn = CnA , (lZ)
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where B, C are recursively computed as

Bn+ 1 - Bn(2PR(A) - AA Bn) ,

_t

Cn+ I = Cn(ZPR(A* ) - A ACn) .

Now, from equation 3

X1 = A Bo .

Suppose

then

Xn=AB n

= A Bn. I(zPR(A) - AA Bn.l) ,

Xn+ 1 = Xn(2PR(A) - AXn)

= A Bn(2PR(A) - AA Bn)

#t

= A Bn+ I

The proof that Xn = CnA

Now, by equation 2 we have

is similar.

Xn+ I : Xn(2PR(A) - AXn)

AXn+ 1

AXn+ 1 = AXnC2PRcA) - AXn)

= AXnCPRcA) - AXn) + AXnPRCA)

-AXn+ 1

PR(A)

PR(A)

: -AXnPR(A) - AXnCPR(A) - AXn)

AXn+I = PR(A) AXnPR(A) - AXn(PR(A) - AXn)

AXn+I = (PR(A) AXn)PR(A) - AXn(PR(A) - AXn) '
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since PR(A) is idempotent. But by equation 12,

Xn--%A

AXn = ACnA

PR(A)P%_-_.

Also,

but

therefore

[AXnPR(A) ]* = PR(A)X*nA*

Xn:ACn ,

PR(A)XnA : PR(A)ACnA

It follows that

Therefore,

and

AXnPR(A) = PR(A)AXn •

PR(A) - AXn+I = (PR(A) - AXn)2

/IPR(A) AXn÷lll = IIPR(A)- AXnl12 n = 0, 1 2,

which, in view of equation 5, proves equation 9.
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To prove equation I0, we write

PR(A*) - Xn+IA = PR(A*) - Xn(2PR(A) - AXn)A '

which is rewritten, by equation ii, as

PR(A*) - Xn+IA--PR(A*) PR(A*)Xn A - XnA + (Xn A)2

since

But

so that

Xn(2PR(A))A = 2XnA

= XnA + XnA

= A BnA + XnA

= PR(A*)A BnA + XnA

= PR(A_)Xn A + XnA.

PR(A*) - PR(A*) XnA - XnA + (XnA) 2 =

= PR(A*)(PR(A*) XnA) - XnA(PR(A*) - XnA )

= (PR(A*) - XnA)2 ,

IIPR(A) - Xn+lAI I < IIPR(A*) - XnA [ 12

which, by equation 6, proves equation 10.

, n = 0, i, 2, . . .
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Theorem 6.7: Le___tA be an arbitrary non__zero complex

mxn matrix of rank r and let

xI(AA)__ x2(AA)_> . . •__ Xr(AA)

denote the non-zero ei_envalues of AA • If the real scalar

satisfies

0 < G <

then the sequence definedby

XO aA _

2
(13)

(14)

Xk+ 1 = Xk(2I - AXk) , k = 0, 1, 2, . . .

converges to A+ as k ÷® .

(iS)

Proof: The matrix Xo , defined by equations 14 and 15,

satisfies equations 3, 4, 5, and 6. To show that Xo satisfies

equation S

I IAXo - PR(A)II < 1 ,

we note that AA+(= PR(A) ) and AA are commuting Herm£tian

matrices with the same range space•

#t

matrix AX° VR(A) (= aAA - AA+)

The eigenvalues of the m x m

are therefore

all(AA )

0

I for i = i, 2, . ; . , r

for i = r+l, . . . , m

(16)
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and by equation 13 are all less than 1 in absolute value.

That is

* AA+)I[_i(aAA - < 1 , i-- i, . . . , m (17)

and similarly

* A+A)Il_i(oAA- < 1 , i = i, . . . , n . (18)

Indeed the non-zero eigenvalues of (aAA* - AA+) and

(_A A - A÷A) are identical. Equations 5 and 6 hold, with

Euclidean norm, because of equations I0 and ii, respectively.

(Actually, Equations 17 and 18 suffice for the convergence of

equation 15.)

Now the process, initiated with X
o

form of equation 12:

= 0_ , retains the

and since

Xk:%A

A PR'A'[) --A

it follows that

(19)

Xk(2PR(A) - AXk) = Xk(2I - AXk) , k = 0, 1, 2, . . . C20)

and the convergence of equation 15 follows from that of equation 2.
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It is interesting to note that it can be shown in a similar

manner that the sequence defined by

Xn = (2I - XkA)X k k = 0, 1, 2,+I ' " " "

with X
O

=A , converges to A+ .

In applying the method of equation 15, it is not necessary

to compute tl(AA ). Writing AA = (bij) , we conclude from the

Gershgorin Theorem that

, m

_I(AA ) < max { Z lbijI}
£=1,... ,m j-1

Therefore equation 13 can be replaced by

0 < (_ <
2

m

max { r[b i I}
i=1,..., m j=l J

Examples of this method and application are given in Ben-Israel

and Cohen [7].
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6.11 Other Methods

In an abstract of a paper presented by E. H. Moore [65]

in June, 1920, he gave an explicit fonmla for each element in the

pseudo inverse. This method depends upon the evaluation of many

determinants and also presupposes a knowledge of the rank of the

matrix A. Its importance is simply its explicit nature. It is

impractical for calculating the pseudo inverse.

There are several infinite series representations for A÷

given by Ben-Israel and Chames [6]. For example,

* *-k
A+ = r. A (I+ AA)

k=1

where A may not be removed as a factor and the series exist

for all A since without loss of generality, null rows or colunms

may be added to fill out non-square matrices.

Different expressions and computation schemes are continuously

appearing in the literature. A thorough analysis of the methods

above, however, indicates that some of these methods are quite

efficient in obtaining A+ .
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